48957

Расчет структуры переменных электромагнитных полей в волноводе

Курсовая

Физика

Полость волновода заполнена диэлектриком, электрическая проницаемость которого Длина волновода в направлении оси z не ограничена. Процесс распространения электромагнитных волн в полости прямоугольного волновода рассматриваем, полагая, что стенки волновода выполнены из сверхпроводящего материала

Русский

2013-12-18

1.7 MB

3 чел.

 Расчет структуры переменных электромагнитных

полей в  волноводе.

 Общее  задание

Для заданного типа волны с начальной амплитудой поля E0 = 5кВ/см, распространяющейся в прямоугольном волноводе сечением ab, получить аналитические выражения продольной и поперечных компонент полей в комплексной форме записи и для мгновенных значений. Для численных параметров задачи построить эпюры полей по осям x, y, z, а также картину распределения полей в плоскостях xy и xz. Рассчитать заданные характеристики полей и  построить их зависимости  от частоты.

Параметры  задачи

Волна E15, ab = 7234 мм;  = 13 мм; диэлектрическая проницаемость  = 2. Рассчитать Λ и Z .

Решение

Оси координат расположим в соответствии с рис. 2.1.

            y    

           x             b

        z   

    a

    Рисунок  2.1.

Полость волновода заполнена диэлектриком, электрическая проницаемость которого . Длина волновода в направлении оси z не ограничена. Процесс распространения электромагнитных волн в полости прямоугольного волновода рассматриваем, полагая, что стенки волновода выполнены из сверхпроводящего материала ( = ). При этом условии напряженность электрического поля на стенках волновода будет равна нулю (плотность тока на стенках волновода  = = E есть величина конечная, поэтому при , E).[2]

Электромагнитное поле в волноводе описывается волновым уравнением:

                                                                    (2.1)

где – круговая частота, а и а – абсолютные электрическая и магнитная проницаемости.

Для заданного типа волны выполняется следующее условие:

Ez  0, Hz = 0, m = 1, n = 5.

Распространяющиеся в волноводе электромагнитные волны являются волнами, бегущими вдоль оси волновода (оси z) и стоячими в двух остальных направлениях.

Тот факт, что волны являются бегущими вдоль оси z, в формально математи-ческом отношении находит свое выражение в том, что каждая из составляющих волн, при записи ее имеет множитель  exp(*t-kp*z), где kp – коэффициент распространения.                                                     

Если подставить  в уравнение (2.1), то последнее разобьется на три уравнения для проекций. Для проекции на ось z будем иметь следующее уравнение:

                                                     (2.2)

Упростим уравнение (2.3) путем подстановки решения вида:

                           ,    (2.3)

справедливого для гармонических процессов в волноводах [2], где

– продольный коэффициент распространения в волноводе,    – длина волны в волноводе. Множитель выражает собой то обстоятельство, что вдоль оси z движется бегущая волна.

Подставляем (2.3) в (2.2):

          

Заменим  и поделим на . Получим:

                                                   (2.4)

Воспользуемся методом разделения переменных и искомую функцию представим в виде:

                                                        (2.5)

и подставим в (2.4), получаем:  

                                         

Разделим это уравнение на XY, получим:

                                              (2.6)

Сумма двух функций   и , из которых одна является функцией только x, а другая – функцией только y, может равняться постоянному числу  только в том случае, если каждая из этих функций есть постоянное число. Перейдем от частных производных к обыкновенным и положим:

                                                   

Здесь через kx и ky обозначены постоянные разделения (поперечные волновые числа), удовлетворяющие равенствам:

,   .

Исходя из соотношения (2.5), имеем выражение для амплитуды (волновой множитель опускаем) продольной составляющей электрического поля:

     (2.7)

где  – начальная комплексная амплитуда; kx, ky, x и y – постоянные интегрирования.

Для нахождения поперечных компонент поля воспользуемся уравнениями Максвелла в проекциях на оси координат[1,2]:

    (2.8)      (2.11)

   (2.9)         

(2.12)

            (2.10)                   (2.13)

В силу того, что для E-волны , то уравнения (2.8), (2.9), (2.13) можно упростить, убрав выражения, содержащие :

      

Поскольку характер изменения полей по оси z задается выражением (2.4), то в (2.8)-(2.13) примем, что:

.   

Рассмотрим теперь уравнения (2.8) и (2.12) как систему для и , а уравнения (2.9) и (2.11) — и :

       

  

 

     (2.14)

Подставляя в (2.14) значение , получаем выражения для поперечных составляющих поля:

         (2.15)

    

    

В соответствии с граничными условиями на стенках волновода = 0 при x=0 и x=a, а = 0 при y=0 и y=b. Тогда:

, где n = 0, 1, 2, …

, где m = 0, 1, 2, …

Окончательное выражение для составляющих поля после подстановки найденных постоянных, а также после подстановки , примет вид:

                 

    

    

Заменим a:

, где — эквивалентное сопротивление волновода для Е-волны [3];  — волновое сопротивление неограниченной среды; fкр — критическая частота.

Тогда:

                 

            (2.16)

    

Аналитические выражения для составляющих поля волны Е15 получаем из (2.16) при m =1 и n = 5:

                 

            (2.16)

    

Для восстановления действительных значений необходимо компоненты полей домножить на опущенный ранее волновой множитель , перейти по формуле Эйлера [4] к тригонометрической форме записи и взять действительную часть полученного выражения:

Получили:

     (2.17)

Длина волны в волноводе и эквивалентное сопротивление волновода для Е-волны в общем случае определяются следующими соотношениями [1, 2]:

,   ,   

где  — волновое сопротивление неограниченной среды; акр — критическая длина волны, которая равна:

Подставив значения, получаем:

Для соотношений (2.17), (2.18) составляем блок-схему и программу расчета зависимостей компонент поля от координат волновода и значений  и  от .

                                                   Блок-схема (1)

Додаток А

#include<conlo.h>

#include<iostream.h>

#Include<graphics,h>

#include<stdlib.h>

#include<math.h>

#define ЕЕ sqrt((E0*R^2-1)sin(a))^2+(E0(R^2/r^2+1)cos(a))^2)

#define EI 0

#define R 0.08

#define EO 50*10^3

double E0,R,r,a,EE,EI,step,max;

char c,num;

int i,j,dr^DETECT,mod,m,n;

double cos_sin(double aa, int q)

void main()

R=0;

step=R-1;

a=0;

step=a+1;

i=0

i<12

step=1+i

{

if(a>360)

a=0;

return (sqrt((E0*R^2-1)sin(a))^2+(E0(R^2/r^2+1)cos(a))^2));

else

return (sqrt((E0*R^2-1)sin(a))^2+(E0(R^2/r^2+1)cos(a))^2));

}

initgraph(&dr,&mod,"D:\\Tp\\cppbb50\\grafbb5\\gfi");

setcolor(1);

circle(0,0,r)

line(5,5,5,10,1,3);

line(0,10,0,10,1,3);

setlinestyle(0,0,3);

settextstyle(1,0,2);

setbkcolor(WHITE);

line(0,10,i,R,a,2);

outtextxy(a,R,2);

a=0;

for(a-0;a<i-l;a++){

line(floor(sqrt((E0*R^2-1)sin(a))^2+(E0(R^2/r^2+1)cos(a))^2))),

floor(EE*(a+step)),EE-floor(EE*[a+l]));

a+=step;

}

R=0;

for(R-0;R<i-l;R++)

{

line(floor(sqrt((E0*R^2-1)sin(a))^2+(E0(R^2/r^2+1)cos(a))^2))),

floor(EE*(R+step)),EE-floor(EE*[R+l]));

R+step;

if(R>15)

R=0;

return (sqrt((E0*R^2-1)sin(a))^2+(E0(R^2/r^2+1)cos(a))^2));

else

return (sqrt((E0*R^2-1)sin(a))^2+(E0(R^2/r^2+1)cos(a))^2));

}

}

Додаток Б

#include<conlo.h>

#include<iostream.h>

#Include<graphics,h>

#include<stdlib.h>

#include<math.h>

#define HH H0/Ze*2*pi*a*b/{LamMa*a*n*n+b*b*m*m) )

#define pi 3.14159265358979

#define mx 639

#define my 479

#define vv Зе+8/sqrt(e)

double E0,Lam, Z,xry,z,lkr,l,e,a,b,kx,ky, step,max;

char c,num;

int i,j,dr^DETECT,mod,m,n;

double cos_sin(double xx,double yy,int q)

{

if(!q)

return (EE*sin(m*pi/a*xx)*cos(n*pi/b*yy));

else

return (EE*cos(m*pi/a*xx)*sin(n*pi/b*yy));

}

void main()

{ double

Ex[200],Ey[200] , Hx[200],Hy[200];

EO-50;

a=0.135;

b=0.065;

rn=1;

n=5;

e о г

lkr=2/sqrt(pow((m/a)r2)+pow((n/b),2)); 1=0.006;

Lam^l/sqrt(e-pow(1/lkr,2)); Z=sqrt(4e-7^pi/(e*8.85e-12)); num-1; for(;;)

cout«"\b \b";

gotoxy(1,1);

cout«"D";

num~l ;

}

}

else if(c=-'\x48')

{

if(num>l)

{

cout«"\b \b";

i=wherex();

j-wherey()-1;

gotoxy(i,j);

cout«"D";

nura—;

}

else

{

cout«"\b \b";

gotoxy(1,7);

cout«"D";

num=7;

}

}

}

switch (num)

{

case 1:

{

x=0;

step=a/200;

max^O;

for(i=0;x<a;i++)

{

Ex[i]=m*b*cos_sin{b/4,x,1); if(max<fabs(Ex[i])) max=fabs(Ex[i]); Ey[i]=a*n*cos_sin(b/4,x,Q); if(max<fabs(Ey[i])) max=fabs(Ey[i]);

Hx[i]=-a*n*cos_sin(b/4,x,0); if(max<fabs(Hx[i])) max=fabs(Hx[i]); Ну[i]=b*m*cos_sin(b/4,x,1); if(max<fabs(Hy[i])) max^fabs(Ну[i]); x+=step;

}

initgraph(&dr,&mod,"C:\\bcpp3\\bgi");

setcolor(1);

setlinestyle(0,0,3);

settextstyle(1,0,2);

setbkcolor(WHITE);

line(0,my/2,mx,my/2);

line(0,0,0,my);

outtextxy(mx-30,my/2-30,"X");

outtextxy(30,70,"Ex(X)");

outtextxy(140,190,"Ey(Yj");

x=0;

kx=1500/a;

ky^!60/max;

for(j-0;j<i-l;j++){

line(floor(kx^x),my/2-floor(ky*Ex[j]) ,

floor(kx*(x+step)),my/2-floor(ky*Ex[j+l]));

x+=step;

}

x=0;

for(j-0;j<i-l;j++)

{

line(floor(kx*x),my/2-floor(ky*Ey[j]),

floor(kx*(x+step)),my/2-floor(ky*Ey[j+l]));

x+^step;

}

getch();

clearcievice () ;

line(0,my/2,rax,my/2);

line(0,0,0,my);

outtextxy(mx-30,my/2-30,"X");

outtextxy(140,50,"Hx(X}");

outtextxy(350,160,"Hy(X)");

x-0;

for(j=0;j<i-l;j++)

{

line(floor(kx*x),my/2-floor(ky*Hx[j]),

floor(kx*(x+step)),my/2-floor(ky*Hx[j+l]));

x+=step;

}

x=0;

for(j=0;j<i-l;j++){

line(floor(kx*x),my/2-floor(ky*Hy[j]),

floor(kx* (x+step) ) ,my/2-'floor(ky*Hy[j + l] ) ) ;

x+=step;

}

getch(); closegraph();

}

break;

case   2;

{

x=0;

step=b/2G0;

rnax=0;

for(i=0;x<b;i++)

{

Ex[i]=m*b*cos_sin(a/4,x,1}; if(max<fabs(Ex[i])) max^fabs(Ex[i]); Ey[i]=a*n*cos_sin(a/4,x,0); if(max<fabs(Ey[i])) max=fabs(Ey[i]); Hx[i]=-a*n*cos_sin(a/4,x,0); if(max<fabs(Hx[i])) max=fabs(Hx[i]); Ну[i]^b*m*cos_sin(a/4,x,1); if(max<fabs(Hy[i])) max=fabs(Ну[i]); x+^step;

}

initgraph(&dr,&mod,"C:\\bcpp3\\bgi");

setbkcolor(WHITE);

setcolor(1);

setlinestyle(0,0,3);

line(Q,my,mx,my);

line(mx/2,0,mx/2,my);

settextstyle(1,0,2);

outtextxy(mx/2+20/10,"Y") ;

outtextxy(340,80,"Ex(Y)");

outtextxy(60/100,"Ey(Y)") ;

x=0;

kx=20G/max;

ky=475/b;

for(j=0;j<i-l;j++){

line(mx/2+floGr(kx*Ex[j]),floor(ky*x),

mx/2+floor(kx*Ex[j+l]),floor(ky*(x+step)));

x+=step;

}

x=0;

for(j-0;j<i-l;j++)

{

line(mx/2+floor(kx*Ey[j]),floor(ky*x),

mx/2+floor(kx*Ey[j-M]),floor(ky*(x+step)));

x+=step;

}

getch (); cleardevice();

line (0,my,mx,my) ; line {mx/2, 0,mx/2,my) ; settextstyle(1,0,2); outtextxy(320-20,10,"Y"); outtextxy{60,220,"Hx(Y)"); outtextxy(350,30,"Ну(Y)"}; x^O; for(j=0;j<i-l;j++)

{

line(mx/2+floor(kx*Hx[j]),floor(ky*x),

mx/2+floor(kx*Hx[j+l]),floor(ky*(x+step)));

x+=step;

}

x^0;

for(j=0;j<i-l;j++)

{

line(mx/2+floor(kx*Hy[j]),floor(ky*x),

mx/2+floor (kx*Hy [ j + 1] ) , floor (ky* (x+step) ) ) ,-

x+=step;

}

getch();

closegraph();

} break;

case 3:

{

step=0.009;

max=0;

x-0;

for(i=0;x<l;i++)

{

Ex[i]=m*b*EE*cos(-x*2*pi/Lam); if(max<fabs(Ex[i])) max^fabs(Ex[i]) ;

Ey[i]=a*n*EE*cos(-l*x*2*pi/Lam); if(max<fabs(Ey[i])) max=fabs(Ey[i]) ;

Hx[i]=-a*n*EE*cos(-l*x*2*pi/Lam); if(max<fabs(Hx[i] )) max^fabs(Hx[i]) ;

Hy[i]=b*m*EE*cos(-l*x*2*pi/Lam); if(max<fabs(Hy[i])) max=fabs(Ну[i]); x+=step;

}

initgraph(&cir, &mod, "C: \\bcpp3\\bgi") ;

setcolor(DARKGRAY);

setbkcolor(WHITE) ;

setcolor(1);

setlinestyle(0, 0,3) ;

line{0,my/2,mx,my/2);

line(0r0,0,my);

settextstyle(1,0,2) ;

outtextxy(mx-30,my/2-10,"X");

outtextxy(130,260,"Ex(Z)");

outtextxy(30,8 0,"Ey(Z)");

x=0;

kx=3000;

ky=150/max;

for(j=0;j<i-l;j++)

{

line(floor(kx*x),my/2-floor(ky*Ex[j]),

floor(kx*(x+step)),my/2-floor(ky*Ex[j+l]));

x+=step;

}

x=0;

for(j=0;j<i-l;j++)

{

line(floor(kx*x) ,my/2- floor (ky*Ey[j] ) ,

floor(kx*(x+step)),my/2~floor(ky*Ey[j+l]));

x+=step;

}

getch();

cleardevice();

line (0,rny/2,mx,rny/2) ;

line(0,0,0,my) ;

outtextxy(mx-30,my/2-10/ "X");

outtextxy(130,65,"Hx(Z)");

outtextxy(130,260,"Hy(Z)");

x=0;

for(j=0;j<i-l;j++)

{

line(floor(kx*x),my/2~floor(ky^Hx[j]) , floor(kx*(x+step))rmy/2-floor(ky*Hx[j+l]));

Xt 5iGPf }

x=0;

for(j=0;j<i-l;j++)

{

line(floor(kx*x),my/2-floor(ky*Hy[j]), floor(kx*(x+step)),my/2-floor(ky*Hy[j+l])); x+=step;

}

getch(); closegraph(); } break; case 4:

{

x=0;

step=0.009;

max=0;

for(i=0;x<l;i++)

{ Ex[i]-E0*sin(-2*pi*x/Lam)' ;

if(max<fabs(Ex[i])) max=fabs(Ex[i]);

x+=step;

}

initgraph(&dr,&mod,"C:\\bcpp3\\bgi");

setbkcolorfWHITE);

setcolor(1) ;

setlinestyle(0,0,3);

line(10,10,10,479);

line{0,240,635,240);

setlinestyle(0,0,3);

settextstyle(1,0,2);

outtextxy(mx-50,my/2+8,"Z");

outtextxy(165,75,"Ez(Z)");

kx-3000;

ky=14 0/max;

x=0;

for(j=0;j<i-l;j++)

{

setcolor(1);

line(10+floor(kx*x),my/2-floor(ky*Ex[j]) ,

10+floor(kx*(x+step)),my/2-floor(ky*Ex[j+1]));

x+-step;

}

getch ();

closegraph();

}

break; case 5:

case 6:exit(0); default:break;}

Выводы

При выполнении курсовой работы были приобретены навыки по расчету структуры  стационарных потенциальных полей и переменных электромагнитных полей в направляющих системах, а также  закреплены навыки основ программирования и работы на персональном компьютере.

В соответствии с заданием на курсовую работу были выведены выражения для потенциала и напряженности полей, рассчитаны (с помощью ЭВМ) семейство эквипотенциальных линий для цилиндрической полости в диэлектрической среде.

В случае переменного электромагнитного поля в прямоугольном волноводе получены аналитические выражения для электрических и магнитных компонент поля,  построены их распределения в поперечном и продольном сечениях. В поперечных сечениях волновода вдоль осей x и у образуются стоячие волны в результате наложения многократных отражений от стенок волновода электромагнитного поля. Длина волны в волноводе больше длины волны в свободном пространстве. При таком условии возможно нормальное распространение электромагнитных волн (без затухания).

 

Перечень ссылок

  1.  Бессонов Л.А. Теоретические основы электротехники. Электромагнитное поле.— М.: Высшая школа, 1986.
  2.  Бессонов Л.А. Теоретические основы электротехники. — Л.: Высшая школа, 1972.
  3.  Татур Т.А. Основы теории электромагнитного поля: Справочное пособие.— М.: Высшая школа, 1989.
  4.  Методические указания к выполнению курсовой работы «Расчет структуры электромагнитных полей» по курсу «Теория поля».— Сумы: СумГУ, 1997.


y)

b

π

x)sin(5

a

π

cos(

)

a

Λ( b

a

10b

E

E

2

2

2

0

x

+25   

=

&

&

(

)

2

кр

λ

λ

εμ

λ

Λ

-

=

[

]

z);

k

-

t

y)cos(

ω

b

π

x)cos(5

a

sin(

)

a

Λ(b

b

2a

Z

E

 

-

z)

k

-

t

jsin(

ω

-

z)

k

-

t

cos(

ω

y)

b

π

x)cos(5

a

π

sin(

)

a

Λ(b

b

2a

Z

E

-

Re

H

p

2

2

2

E

э

0

p

p

2

2

2

E

э

0

x

+25

=

=

þ

ý

ü

î

í

ì

+25

=

&

y)

b

π

x)cos(5

a

π

sin(

)

a

Λ(b

b

2a

E

E

2

2

2

0

y

+255

=

&

&

y)

b

π

x)sin(5

a

π

sin(

E

j

E

0

z

&

&

=

y)

b

π

x)cos(5

a

π

sin(

)

a

Λ(b

b

2a

Z

E

 

-

H

2

2

2

E

э

0

x

+25

=

&

&

y)

b

π

x)sin(5

a

π

cos(

)

a

Λ(b

a

10b

Z

E

H

2

2

2

E

э

0

y

+25

=

&

&

[

]

z);

k

-

t

y)cos(

ω

b

π

x)sin(5

a

π

cos(

)

a

Λ(b

a

10b

E

z)

k

-

t

jsin(

ω

-

z)

k

-

t

cos(

ω

y)

b

π

x)sin(5

a

1

π

cos(

)

a

Λ(b

a

10b

E

Re

E

p

2

2

2

0

p

p

2

2

2

0

x

+25

=

=

þ

ý

ü

î

í

ì

+25

=

&

[

]

z);

k

-

t

y)cos(

ω

b

π

x)cos(5

a

π

sin(

)

a

Λ(b

b

2a

E

z)

k

-

t

jsin(

ω

-

z)

k

-

t

cos(

ω

y)

b

5

π

x)cos(

a

π

sin(

)

a

Λ(b

b

2a

E

Re

E

p

2

2

2

0

p

p

2

2

2

0

y

+25

=

=

þ

ý

ü

î

í

ì

+255

=

&

[

]

z);

k

-

t

y)sin(

ω

b

π

x)sin(5

a

π

sin(

E

z)

k

-

t

jsin(

ω

-

z)

k

-

t

cos(

ω

y)

b

π

x)sin(5

a

π

sin(

E

j

Re

E

p

0

p

p

0

z

=

=

þ

ý

ü

î

í

ì

=

&

[

]

z);

k

-

t

y)cos(

ω

b

5

π

x)sin(

a

π

cos(

)

a

Λ(b

a

10b

Z

E

z)

k

-

t

jsin(

ω

-

z)

k

-

t

cos(

ω

y)

b

5

π

x)sin(

a

π

cos(

)

a

Λ(b

a

10b

Z

E

Re

H

p

2

2

2

E

э

0

p

p

2

2

2

E

э

0

y

+25

=

=

þ

ý

ü

î

í

ì

+25

=

&

z);

k

-

t

y)cos(

ω

b

5

π

x)sin(

a

π

cos(

)

a

Λ(b

a

10b

E

E

p

2

2

2

0

x

+25

=

z);

k

-

t

y)cos(

ω

b

5

π

x)cos(

a

π

sin(

)

a

Λ(b

b

2a

E

E

p

2

2

2

0

y

+25

=

z);

k

-

t

y)sin(

ω

b

5

π

x)sin(

a

π

sin(

E

E

p

0

z

=

z);

k

-

t

y)cos(

ω

b

5

π

x)cos(

a

π

sin(

)

a

Λ(b

b

2a

Z

E

 

-

H

p

2

2

2

E

э

0

x

+25

=

z);

k

-

t

y)cos(

ω

b

5

π

x)sin(

a

π

cos(

)

a

Λ(b

a

10b

Z

E

H

p

2

2

2

E

э

0

y

+25

=

;

b

5

a

1

2

λ

b

n

a

m

2

λ

λ

2

2

Е

кр

2

2

Е

кр

кр

15

n

 

m

÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

=

=

÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

=

=

e

m

e

m

Лист

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Начало

Ввод

E0,R,r,a,E step E,EI

step=a+1

initgraph

Конец

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.

Лист

Дата

Подпись

№ докум.

Лист

Изм.


 

А также другие работы, которые могут Вас заинтересовать

11461. Информатика в 7 классе. Все конспекты уроков 2.05 MB
  Дополнительные материалы для любознательных обозначены значком. Учебное методическое пособие предполагает наличие в школьном кабинете информатики IBM-совместимых компьютеров, организованных в локальную сеть, а также программного обеспечения: операционной системы Windows, браузера Internet Explorer, редактора презентаций Microsoft PowerPoint, системы программирования Pascal ABC.
11462. ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ БИТИРОЗИНА И ОКИСЛЕННОГО ТРИПТОФАНА В ПЛАЗМЕ КРОВИ 28.5 KB
  ЛАБОРАТОРНАЯ РАБОТА ознакомительная Определение содержания битирозина и окисленного триптофана в плазме крови ПРИНЦИП МЕТОДА. Оценку содержания битирозина и окисленного триптофана проводят методом K.J. Davies 1987 в модификации Э.М. Бекмана и cоавторов 2006. В резуль
11463. ОПРЕДЕЛЕНИЕ СУММЫ ВОССТАНОВЛЕННОГО ГЛУТАТИОНА И ЦИСТЕИНА В КРОВИ 24 KB
  ЛАБОРАТОРНАЯ РАБОТА Определение суммы восстановленного глутатиона и цистеина в крови ПРИНЦИП МЕТОДА. SHгруппа в составе аминокислоты цистеина и трипептида глутатиона обладает восстановительными свойствами и может под влиянием окислителей превращаться в дисул
11464. ОПРЕДЕЛЕНИЕ АКТИВНОСТИ КАТАЛАЗЫ 37 KB
  ЛАБОРАТОРНАЯ РАБОТА Определение активности каталазы 1.11.1.6 1 с помощью перманганата калия и вычислением каталазного числа метод Баха и Зубковой ПРИНЦИП МЕТОДА. Фермент каталаза содержится в большом количестве в эритроцитах а также во всех тканях и жидкост...
11465. Оценка активности супероксиддисмутазы в сыворотке крови 38.5 KB
  Лабораторная работа Оценка активности супероксиддисмутазы в сыворотке крови демонстрационная 1 по ингибированию восстановления нитротетразолия синего Принцип. Об активности фермента супероксиддисмутазы СОД свидетельствует его способность тормозить восс...
11466. Культурологія як наукова і навчальна дисципліна. Специфіка культурологічного знання 8.8 MB
  Тема: Культурологія як наукова і навчальна дисципліна. Специфіка культурологічного знання. Курс Культурологія входить до циклу дисциплін гуманітарної та соціальноекономічної підготовки студента у вищих закладах освіти який дає змогу обєднати такі дисципліни як...
11467. КРИЗОВІ ЯВИЩА В КУЛЬТУРІ 204 KB
  Лекція 12.КРИЗОВІ ЯВИЩА В КУЛЬТУРІ Весь попередній розгляд сутності та проявів культури засвідчує що її можна вважати тією територією людськості яка відвойована людиною в шаленого масиву природи та яка засвідчує ті прояви людини котрі вона своєю творчою насн
11468. Основні концептуальні парадигми (концепції, теорії та напрями) культурології 147.5 KB
  Лекція 2. Основні концептуальні парадигми концепції теорії та напрями культурології. Донауковий етап уявлень про культуру. Ще в давніх міфах є спроба відповісти на питання про початок культурної історії людства. В легендах і міфах кожного народу є легендарні гер...
11469. Культура та цивілізація 297 KB
  Лекція 3. Культура та цивілізація. Питання про співвідношення культури та цивілізації є питанням полемічним. Якщо поняття культура є складним для розуміння на науковому рівні і добре окреслюється іншими поняттями на буденному рівні то поняття цивілізація в наук