48984

Розрахунок структури симетричних стаціонарних електромагнітних полів

Контрольная

Физика

Симетричне тіло радіуса R перебуває в однорідному зовнішньому електричному полі E0, що перпендикулярне до його осі. Задано матеріальні характеристики навколишнього середовища. Одержати аналітичні вирази для потенціалів й і для полів Ei й Ee відповідно всередині та поза тілом.

Украинкский

2013-12-18

146 KB

1 чел.

1 Розрахунок  структури  симетричних  стаціонарних

електромагнітних  полів

Загальне  завдання

Симетричне тіло радіуса R перебуває в однорідному зовнішньому електричному полі E0, що перпендикулярне до його осі. Задано матеріальні характеристики навколишнього середовища. Одержати аналітичні вирази для потенціалів й  і для полів Ei й Ee відповідно всередині та поза тілом. Для заданих чисельних значень параметрів задачі побудувати сімейство еквіпотенційних ліній (10 ліній) у площині, що перпендикулярна осі симетрії тіла. Знайти щільність зарядів  на поверхні провідника.

    Параметри  задачі

Нескінченний незаряджений провідний циліндр в вакуумі:

R=0,08 м; E0=50*103 В/м; =1. Координати точки M: r=0,08 м, =300.

Розв’язок

Розв’язок природно робити в циліндричних координатах, що пов'язані із центром основи циліндра, r - радіус-вектор точки спостереження, вісь x спрямована вздовж прикладеного електричного поля (рис. 1.1).

Рисунок 1.1

При такому розташуванні циліндра, потенціал поля не буде залежати від координати z, і двомірне рівняння Лапласа запишеться у вигляді:

                           (1.1)

Як усередині, так і поза циліндром сторонніх зарядів немає, тому варто вирішувати рівняння Лапласа  з відповідними граничними умовами на поверхні r = R.

Відповідно до методу розділення змінних, можна знайти розв’язок рівняння (1.1) у вигляді добутку двох функцій, кожна з яких залежить тільки від однієї координати:

                                   (1.2)

Після підстановки виразу (1.2) в (1.1) одержимо:

Домножуючи на r2 /MN, легко помітити, що змінні розділяються:

Ця рівність не повинна порушуватися, якщо одну з незалежних змінних  r або довільно змінити, а іншій надати довільне, але постійне значення. Очевидно, що при змінах r або кожна частина рівняння повинна  залишатися постійною та рівною одному і тому самому числу - постійній розділення p:                 

                                    (1.3)

                                            (1.4)

Цим самим розв’язок рівняння (1.1) із частинними похідними зведене до більш простої задачі - до розв’язку звичайних диференціальних рівнянь.

Насамперед, треба знайти частинні розв’язки рівнянь (1.3) і (1.4) для p=0. Позначимо їх M0 та N0, і в результаті одержимо:

Т. як потенціал є парною функцією відносно  тобто  то необхідно прийняти А3=0.

Якщо взяти, відповідно до рівності (1.2), добуток функцій M0 й N0 та  змінити позначення постійних, то можна одержати частинний розв’язок  рівняння Лапласа у вигляді:

                                                           (1.5)

Нехай тепер постійна розділення p у рівняннях (1.3) і (1.4) відмінна від нуля.

Для розв’язку рівняння (1.3) застосуємо підстановку Ейлера M=C*rn. Перша і друга похідні відповідно будуть рівні

М=М12

М11r                                                                  М22/r

М= С1r+ С2/r

Підставимо похідні в рівняння

або        і  тоді                           (1.6)

Значення p визначимо при інтегруванні рівняння (1.4):

С2=0, бо є функція парна, тобто  тоді N(k)=Bcos(k). Якщо прийняти, що потенціал на осі у дорівнює 0  то , а відповідно, k=1. При k>1 нульова потенціальна лінія буде нахилена до осі у, що не відповідає досліджуваному полю (потенціал дорівнює нулю по вісі z). Таким чином розв’язок можна записати у вигляді . Переконаємося в цьому шляхом  підстановки й одночасно знайдемо значення  p:

Отже:  p = 1.

Після знаходження числа p підставимо його в рівняння (1.6) і знайдемо: n1=1 й n2= -1. Таким чином, спільний розв’язок рівнянь (1.3) і (1.4) при p, не рівному нулю, дає наступний вираз для

                                                                  (1.7)

Повний розв’язок:

                                        (1.8)

В (1.8) присутні чотири невідомі постійні, значення яких залежать від того, який циліндр (провідний або діелектричний) внесений у поле.

Якщо в рівномірне поле поміщений нескінченний незаряджений провідний циліндр, то, як усередині, так і поза ним вільних зарядів немає й, тому поле описується рівнянням Лапласа. Величини, що служать для опису поля усередині циліндра, позначимо з індексом i, а величини, за допомогою яких записується потенціал у зовнішній стосовно циліндра області, - з  індексом e. Таким чином:

для  внутрішньої  області:

                                                      (1.9)

для  зовнішньої  області:

                                                    (1.10)

Треба знайти 8 постійних інтегрування. Потенціал на нескінченності в цьому випадку

Зіставимо останній вираз з (1.10):  

Отже:

                              (1.11)

У виразі (1.10) залишилася невідомою лише постійна C4e.

Розглянемо вираження потенціалу  для внутрішньої області. Т. як циліндр провідний, то поле всередині його дорівнює нулю, а потенціал являє собою деяку постійну величину. Це можливо тільки тоді, коли C1i=0, C3i=0 й C4i=0. Постійна C2i, з точністю до якої визначається потенціал, дорівнює аналогічної постійної  для зовнішньої області. Таким чином, для внутрішньої  області

                                                                                                 (1.12)

Невідому постійну C4e знайдемо із граничних умов:

 при . Отже:

                                (1.13)

cosα=0                                   або                            =0

cosα не дорівнює 0 стоїть умова , а α є якоюсь певною величиною.

Залишається лише =0. Звідси С0R2

Підставивши знайдені постійні, остаточно одержимо потенціал внутрішньої області:

                                                 (1.14)

потенціал зовнішньої області:

                                 (1.15)

Знайдемо вираз для напруженості електричного поля всередині та поза циліндром. Напруженість рівномірного поля усередині циліндра рівна нулю:

                                                    (1.16)

Тому що потенціал залежить тільки від r та α, то напруженість електричного поля поза циліндром має лише дві складові:

                                         (1.17)

Рівняння еквіпотенційних ліній у площині, що проходить через центр циліндра перпендикулярно електричному полю E, задане в циліндричних координатах, має вигляд:

                                                                                         (1.18)

де n=const — фіксоване значення потенціалу, обране для побудови еквіпотенціали (n=1,2,3,...). Рівняння еквіпотенційних ліній поза циліндром треба з формул (1.15), (1.18) і врахувавши те що 0=0 маємо:

            та           

Відповідно:                                                               (1.19)

Еквіпотенціальні лінії будуємо в площині xz.

Щільність зарядів на поверхні провідника прямо пропорційна вектору електричної індукції поза циліндром і визначається виразом:

Вона постійна на всій поверхні циліндра. Значення щільності зарядів на поверхні циліндра при r=R:

Чисельне значення вектора електричної індукції в точці M при r=R дорівнює:

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.


 

А также другие работы, которые могут Вас заинтересовать

50217. КЕРУВАННЯ ЕНЕРГЕТИЧНИМИ ПАРАМЕТРАМИ ЛАЗЕРНОЇ ТЕХНОЛОГІЧНОЇ УСТАНОВКИ. ККД ЛАЗЕРА 702 KB
  ККД ЛАЗЕРА Ціль роботи: вивчити склад і пристрій електричної частини лазерної технологічної установки ЛТУ; ознайомитися з етапами перетворення енергії в лазерних установках і з методами виміру енергетичних параметрів лазерного випромінювання; зняти енергетичну характеристику ЛТУ залежно від параметрів схеми накачування; визначити ККД лазера при різних режимах його роботи. Устаткування й прилади Лазерна технологічна установка Квант16 ; вимірювальник енергії ИКГ1М; лазер газовий ЛГ105.1: індуктивноємнісний перетворювач...
50218. Развитие околоносовых пазух ребенка, связь со становлением зубной дуги. Причины воспалительных изменений околоносовых пазух и возможность внутричерепных осложнений 15.54 KB
  Околоносовые пазухи у новорожденных недоразвиты и формируются в процессе развития лицевых костей и роста ребенка. При рождении у ребенка имеются две околоносовые пазухи: достаточно хорошо развитая решетчатая и рудиментарная
50219. ИЗУЧЕНИЕ ЗАТУХАЮЩИХ ЭЛЕКТРОМАГНИТНЫХ КОЛЕБАНИЙ В КОЛЕБАТЕЛЬНОМ КОНТУРЕ С ПОМОЩЬЮ ОСЦИЛЛОГРАФА 242 KB
  Цель работы: Изучение с помощью электронного осциллографа электромагнитных колебаний возникающих в колебательном контуре содержащем индуктивность емкость и активное сопротивление; изучение условий возникновения затухающих колебаний в контуре; расчет основных...
50220. Взаимодействие поля постоянного магнита и проводника с током для измерения силы тока 42.5 KB
  Цель работы: экспериментальное измерение основных характеристик гальванометра магнитоэлектрической системы. Наиболее удачной является конструкция гальванометра с радиальным магнитным полем: такое поле создано в узком зазоре между цилиндрическим полюсным наконечником N и S постоянного магнита и железным сердечником цилиндрической формы. S1=1 C1 – чувствительность гальванометра.
50221. Основные достижения отечественной ветеринарии 78 KB
  Ветеринарная медицина-область научных знаний и практической деятельности, направленных на борьбу с болезнями животных, охрану людей от инфекций общих для животных и человека, выпуск доброкачественной в санитарном отношении продукции и решение ветеринарно-санитарных проблем защиты окружающей среды.
50222. ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ В ПОСЛЕДОВАТЕЛЬНОМ ЭЛЕКТРИЧЕСКОМ КОНТУРЕ 323.5 KB
  Цель работы: Изучение вынужденных колебаний в последовательном контуре определение добротности контура и внутреннего сопротивления генератора синусоидальных колебаний. Основные теоретические положения к данной работе основополагающие утверждения: формулы схематические рисунки:...
50223. Визначення ширини забороненої зони напівпровідників з температурної залежності їх провідності 219.5 KB
  Цю залежність можна подати так: 1 де питома провідність власного напівпровідника при ; ширина забороненої зони напівпровідника; стала Больцмана. Тому ширину забороненої зони власного напівпровідника можна визначити із співвідношення:...
50224. Відкритий валютний ринок, його характеристика та інструменти 863 KB
  Валютний ринок – це сфера економічних відносин, щодо здійснення операцій з купівлі-продажу іноземної валюти і цінних паперів в іноземній валюті з метою отримання прибутку та хеджування, а також операцій з інвестування валютного капіталу.
50225. ИЗУЧЕНИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН В ДВУХПРОВОДНОЙ ЛИНИИ 160.5 KB
  Принципиальная схема установки или её главных узлов: Блоксхема лабораторной установки для изучения электромагнитных волн в двухпроводной линии Конструкции зондов для изучения распределения составляющих электромагнитного поля: а – петлевой зонд рамка; б – вибратор Схема установки для изучения электромагнитных волн в двухпроводной линии приведена на рис. В линии устанавливается распределение электромагнитного поля зависящее от величины нагрузочного сопротивления . Эти...