48985

Розрахунок структури змінних електромагнітних полів у хвилеводі

Контрольная

Физика

Порожнина хвилеводу заповнена діелектриком, електрична проникність якого овжина хвилеводу в напрямку осі z не обмежена. Процес поширення електромагнітних хвиль у порожнині прямокутного хвилеводу розглядаємо, думаючи, що стінки хвилеводу виконані з надпровідного матеріалу ( = ).

Украинкский

2013-12-18

550 KB

6 чел.

2 Розрахунок структури змінних електромагнітних

полів у  хвилеводі

Загальне  завдання.

Для заданого типу хвилі з початковою амплітудою поля E0 = 5кВ/см, що поширюється в прямокутному хвилеводі перетином ab, одержати аналітичні вирази поздовжнього й поперечного компонентів полів у комплексній формі запису і для миттєвих значень. Для числових параметрів завдання побудувати епюри полів по осях x, y, z, а також картину розподілу полів у площинах xy та xz. Розрахувати задані характеристики полів і побудувати їхні залежності  від частоти.

Параметри  завдання.

Хвиля Н15, ab = 13065 мм;  = 24 мм; діелектрична проникність  = 1. Розрахувати kp та Ze.

Рішення

Осі координат розташуємо відповідно до рис. 2.1.

Рисунок  2.1.

Порожнина хвилеводу заповнена діелектриком, електрична проникність якого . Довжина хвилеводу в напрямку осі z не обмежена. Процес поширення електромагнітних хвиль у порожнині прямокутного хвилеводу розглядаємо, думаючи, що стінки хвилеводу виконані з надпровідного матеріалу ( = ). При цьому умові напруженість електричного поля на стінках хвилеводу буде дорівнює нулю (щільність струму на стінках хвилеводу  = E є величина кінцева, тому при , E ).

Електромагнітне поле у хвилеводі описується хвильовим рівнянням:

                                                                                (2.1)

Для заданого типу хвилі виконується наступна умова:

Ez = 0, Hz  0, m = 1, n = 5.

Електромагнітні хвилі, що поширюються у хвилеводі, є хвилями, що біжать вздовж осі хвилеводу (осі z) і стоячими у двох інших напрямках.

Той факт, що хвилі є хвилями, що біжать вздовж осі z, у формально математичному відношенні знаходить своє вираження в тому, що кожна зі складових хвиль, при записі її має множник , де kp – коефіцієнт поширення.

Спростимо отримане рівняння (2.1) методом підстановки:

                                (2.2)

де  - прокольний коефіцієнт поширення в хвилеводі,  - довжини хвиль в хвилеводі. Множник виражає собою та обставина, що уздовж осі z рухається хвиля, що біжить.

Якщо підставити в рівняння (2.1), то останнє розіб'ється на три рівняння для проекцій. Для проекції на вісь z будемо мати наступне рівняння:

                                  (2.3)

Підставляємо (2.3) в (2.2):

Замінимо  й поділимо на . Одержимо:

                            (2.4)

Скористаємося методом поділу змінних і шукану функцію представимо у вигляді:

                                      (2.5)

і підставимо в (2.4), одержуємо:  

                                         

Розділимо це рівняння на XY, одержимо:

              (2.6)

Сума двох незалежних функцій   й , з яких одна є функцією тільки x, а інша – функцією тільки y, може дорівнювати постійному числу  тільки в тому випадку, якщо кожна із цих функцій є постійне число. Перейдемо від часток похідних до звичайного й покладемо:

                                                                             

Тут через kx й ky позначені постійні поділи (поперечні хвильові числа), що задовольняють рівностям:

                                         

Виходячи зі співвідношення (2.5), маємо вираження для амплітуди (хвильовий множник опускаємо) поздовжнього складового електричного поля:

             (2.7)

де  – початкова комплексна амплітуда; kx, ky, x та y – постійні інтегрування.

Для знаходження поперечних компонентів поля (kx, ky, x тай y) скористаємося рівняннями Максвелла в проекціях на осі координат:

     (2.8)              (2.11)

    (2.9)                  (2.12)

    (2.10)                 (2.13)

У силу того, що для Н-хвилі , то рівняння (2.10), (2.11), (2.12) можна спростити, забравши вираження, що містять:

     

Оскільки характер зміни полів по осі z задається вираженням (2.4), то в (2.8)-(2.13) приймемо, що:

Розглянемо тепер рівняння (2.8) і (2.12) як систему для й , а рівняння (2.9) і (2.11) —  і :

                         

           

      

                               

(2.14)

Підставляючи в (2.14) значення , одержуємо вирази для поперечних складових поля:

(2.15)

Відповідно до граничних умов на стінках хвилеводу = 0 при x=0 й x=a, а = 0 при y=0 й y=b. Тоді:

 ,

де n = 0, 1, 2, ...

,

де m = 0, 1, 2, ...

Остаточний вираз для складового поля після підстановки знайдених постійних, а також після підстановки , прийме вигляд:

Замінимо:

де — еквівалентний опір хвилеводу для Н-хвилі;  — хвильовий опір необмеженого середовища; fкр — критична частота.

Тоді:

(2.16)

Аналітичні вирази для складових поля хвилі Н15 одержуємо з (2.16) при m = 1 й n = 5:

(2.17)

Для відновлення дійсних значень необхідно компоненти полів домножити на опущений раніше хвильовий множник , перейти по формулі Ейлера  до тригонометричної форми запису й взяти дійсну частину отриманого вираження:

Для інших складових аналогічно.

Одержали:

     (2.18)

Довжина хвилі у хвилеводі й еквівалентний опір хвилеводу для Н-хвилі в загальному випадку визначаються наступними співвідношеннями:

де с – швидкість світла;

де  — хвильовий опір необмеженого середовища; кр — критична довжина хвилі, що дорівнює:

Підставивши значення, одержуємо:

Для співвідношень (2.17), (2.18) складаємо програму для розрахунку та побудови залежностей компонент поля від координат хвилеводу й значень  й  від .

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.

рк.

Дата

Підпис

№ докум.

Арк.

Змн.

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.


 

А также другие работы, которые могут Вас заинтересовать

44945. Александр Николаевич Самохвалов 24.39 KB
  Александр Николаевич Самохвалов 21 августа 1894 Бежецк Тверская губерния Российская империя 20 августа 1971 Ленинград СССР крупнейший советский художник живописец график прикладник монументалист Заслуженный деятель искусств Российской Федерации член Ленинградской организации Союза художников РСФСР. Самохвалов Александр Николаевич родился 8 21 августа 1894 года в городе Бежецк Тверской губернии. Его отец Николай Дмитриевич Самохвалов занимался мелкой торговлей умер в 1917 году. Мать Самохвалова Елена Фёдоровна в девичестве...
44946. Организация вычисляемого перехода 41.46 KB
  Вычисляемый переход осуществляется при помощи команды ddwf PCF которая формально описывается так: сложить содержимое регистров W и PC с сохранением результата сложения в регистре PC имеется ввиду младший байт счетчика команд с названием PCL. Для вычисляемого перехода адрес в PC на момент исполнения команды ddwf PCF является как бы начальной точкой отсчета т. число находящееся в регистре W на момент исполнения команды ddwf PCF которое и будет приращением счетчика команд PC.
44947. Динамическая индикация 59.87 KB
  Для краткости эти регистры обозначим под названиями LED с соответствующей нумерацией. Например если результат измерения подсчета нужно вывести на индикацию как 4 разрядное десятичное число то двоичный результат измерения “прогоняется†через двоично-десятичное преобразование о нем позднее в итоге которого результат измерения помещается в младшие полубайты 4х регистров LED от LED0 до LED3.0 MHz ; DtL equ 0Ch DtH equ 0Dh D_H equ 0Eh D_L equ 0Fh Step equ 1Bh Led0 equ 1Ch Led1...
44949. Работа с EEPROM памятью данных 61.93 KB
  Поставим перед собой достаточно простую и конкретную задачу (что-то типа задания на первоначальную разработку). Допустим, что в ходе исполнения программы нужно изменить (модифицировать) содержимое пяти ячеек EEPROM памяти, начиная с адреса 7. Для простоты модификации (и для обеспечения наглядности наблюдения за происходящими в EEPROM памяти изменениями) к первому числу (по адресу 7) необходимо добавить 1...
44950. Однокристальные микроконтроллеры серии PIC 231 KB
  Микроконтроллеры семейств PIC (Peripheral Interface Controller) компании Microchip, обладающие особой популярностью, построены на основе передовых технологий микроконтроллеров. Им свойственны следующие особенности: электрически программируемые пользователем ППЗУ, минимальное энергопотребление, высокая производительность, хорошо развитая RISC-архитектура
44952. Автоколебательный мультивибратор 33.87 KB
  Проанализируем нашу программу, реализующую функцию автоколебательного мультивибратора, с одним выходом. Форма сигнала меандр (скважность, т.е. отношение периода к длительности импульса – 2). Под этот выход можно назначить любой из выводов порта А или В...
44953. Устройство формирования сигнала тонального вызова 87.52 KB
  Полупериоды формируем используя €œзакольцовку рабочей точки программы в подпрограммах задержки по аналогии с программой Multi. К моменту начала составления текста программы желательно определиться с как можно большим количеством исходных данных. Так как программа должна исполняться непрерывно то в случае нахождения устройства в режиме ожидания включения на передачу рабочая точка программы должна €œзакольцеваться€ до последующего нажатия на кнопку в какой-нибудь подпрограмме. Часто такого рода закольцовки осуществляют в...