48985

Розрахунок структури змінних електромагнітних полів у хвилеводі

Контрольная

Физика

Порожнина хвилеводу заповнена діелектриком, електрична проникність якого овжина хвилеводу в напрямку осі z не обмежена. Процес поширення електромагнітних хвиль у порожнині прямокутного хвилеводу розглядаємо, думаючи, що стінки хвилеводу виконані з надпровідного матеріалу ( = ).

Украинкский

2013-12-18

550 KB

6 чел.

2 Розрахунок структури змінних електромагнітних

полів у  хвилеводі

Загальне  завдання.

Для заданого типу хвилі з початковою амплітудою поля E0 = 5кВ/см, що поширюється в прямокутному хвилеводі перетином ab, одержати аналітичні вирази поздовжнього й поперечного компонентів полів у комплексній формі запису і для миттєвих значень. Для числових параметрів завдання побудувати епюри полів по осях x, y, z, а також картину розподілу полів у площинах xy та xz. Розрахувати задані характеристики полів і побудувати їхні залежності  від частоти.

Параметри  завдання.

Хвиля Н15, ab = 13065 мм;  = 24 мм; діелектрична проникність  = 1. Розрахувати kp та Ze.

Рішення

Осі координат розташуємо відповідно до рис. 2.1.

Рисунок  2.1.

Порожнина хвилеводу заповнена діелектриком, електрична проникність якого . Довжина хвилеводу в напрямку осі z не обмежена. Процес поширення електромагнітних хвиль у порожнині прямокутного хвилеводу розглядаємо, думаючи, що стінки хвилеводу виконані з надпровідного матеріалу ( = ). При цьому умові напруженість електричного поля на стінках хвилеводу буде дорівнює нулю (щільність струму на стінках хвилеводу  = E є величина кінцева, тому при , E ).

Електромагнітне поле у хвилеводі описується хвильовим рівнянням:

                                                                                (2.1)

Для заданого типу хвилі виконується наступна умова:

Ez = 0, Hz  0, m = 1, n = 5.

Електромагнітні хвилі, що поширюються у хвилеводі, є хвилями, що біжать вздовж осі хвилеводу (осі z) і стоячими у двох інших напрямках.

Той факт, що хвилі є хвилями, що біжать вздовж осі z, у формально математичному відношенні знаходить своє вираження в тому, що кожна зі складових хвиль, при записі її має множник , де kp – коефіцієнт поширення.

Спростимо отримане рівняння (2.1) методом підстановки:

                                (2.2)

де  - прокольний коефіцієнт поширення в хвилеводі,  - довжини хвиль в хвилеводі. Множник виражає собою та обставина, що уздовж осі z рухається хвиля, що біжить.

Якщо підставити в рівняння (2.1), то останнє розіб'ється на три рівняння для проекцій. Для проекції на вісь z будемо мати наступне рівняння:

                                  (2.3)

Підставляємо (2.3) в (2.2):

Замінимо  й поділимо на . Одержимо:

                            (2.4)

Скористаємося методом поділу змінних і шукану функцію представимо у вигляді:

                                      (2.5)

і підставимо в (2.4), одержуємо:  

                                         

Розділимо це рівняння на XY, одержимо:

              (2.6)

Сума двох незалежних функцій   й , з яких одна є функцією тільки x, а інша – функцією тільки y, може дорівнювати постійному числу  тільки в тому випадку, якщо кожна із цих функцій є постійне число. Перейдемо від часток похідних до звичайного й покладемо:

                                                                             

Тут через kx й ky позначені постійні поділи (поперечні хвильові числа), що задовольняють рівностям:

                                         

Виходячи зі співвідношення (2.5), маємо вираження для амплітуди (хвильовий множник опускаємо) поздовжнього складового електричного поля:

             (2.7)

де  – початкова комплексна амплітуда; kx, ky, x та y – постійні інтегрування.

Для знаходження поперечних компонентів поля (kx, ky, x тай y) скористаємося рівняннями Максвелла в проекціях на осі координат:

     (2.8)              (2.11)

    (2.9)                  (2.12)

    (2.10)                 (2.13)

У силу того, що для Н-хвилі , то рівняння (2.10), (2.11), (2.12) можна спростити, забравши вираження, що містять:

     

Оскільки характер зміни полів по осі z задається вираженням (2.4), то в (2.8)-(2.13) приймемо, що:

Розглянемо тепер рівняння (2.8) і (2.12) як систему для й , а рівняння (2.9) і (2.11) —  і :

                         

           

      

                               

(2.14)

Підставляючи в (2.14) значення , одержуємо вирази для поперечних складових поля:

(2.15)

Відповідно до граничних умов на стінках хвилеводу = 0 при x=0 й x=a, а = 0 при y=0 й y=b. Тоді:

 ,

де n = 0, 1, 2, ...

,

де m = 0, 1, 2, ...

Остаточний вираз для складового поля після підстановки знайдених постійних, а також після підстановки , прийме вигляд:

Замінимо:

де — еквівалентний опір хвилеводу для Н-хвилі;  — хвильовий опір необмеженого середовища; fкр — критична частота.

Тоді:

(2.16)

Аналітичні вирази для складових поля хвилі Н15 одержуємо з (2.16) при m = 1 й n = 5:

(2.17)

Для відновлення дійсних значень необхідно компоненти полів домножити на опущений раніше хвильовий множник , перейти по формулі Ейлера  до тригонометричної форми запису й взяти дійсну частину отриманого вираження:

Для інших складових аналогічно.

Одержали:

     (2.18)

Довжина хвилі у хвилеводі й еквівалентний опір хвилеводу для Н-хвилі в загальному випадку визначаються наступними співвідношеннями:

де с – швидкість світла;

де  — хвильовий опір необмеженого середовища; кр — критична довжина хвилі, що дорівнює:

Підставивши значення, одержуємо:

Для співвідношень (2.17), (2.18) складаємо програму для розрахунку та побудови залежностей компонент поля від координат хвилеводу й значень  й  від .

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.

рк.

Дата

Підпис

№ докум.

Арк.

Змн.

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.

Арк.

Дата

Підпис

№ докум.

Арк.

Змн.


 

А также другие работы, которые могут Вас заинтересовать

76152. Специальные операции реляционной алгебры 27.82 KB
  Основная идея реляционной алгебры состоит в том что коль скоро отношения являются множествами то средства манипулирования отношениями могут базироваться на традиционных теоретикомножественных операциях дополненных некоторыми специальными операциями специфичными для баз данных.
76153. Технологии 3Dпечати 419.7 KB
  Исходным продуктом является жидкий фотополимер в который добавлен специальный реагентотвердитель и эта смесь напоминает всем известную эпоксидную смолу только в обычном состоянии она остается жидкой а полимеризуется и становится твердой под воздействием ультрафиолетового лазера.
76158. Проблема організації доступу учнів до Інтернету за умов обмеженої кількості компютерів в класі. Різні форми організації роботи в Інтернеті 42.88 KB
  Подумати тільки якщо Інтернет за такий короткий час розвитку робить такі неуявні речі то що буде в майбутньому Інтернет увійде в кожен будинок. Використання Інтернету буде настільки ж багатогранно як багатогранна й саме життя...
76159. Утренняя гигиеническая Гимнастика 90 KB
  Формирование человека на всех этапах его эволюционного развития проходило в неразрывной связи с активной мышечной деятельностью. Организм человека развивается в постоянном движении. Сама природа распорядилась так что человеку необходимо развивать свои физические способности.