49006

Саздание программы на языке программирования Паскаль

Другое

Информатика, кибернетика и программирование

Результаты расчетов должны выводиться на экран и в файл. Оформление графиков и таблиц выполнять средствами математических пакетов (Maple, MathCad). Демонстрационный вариант программы подготовить в среде визуального программирования Delphi.

Русский

2013-12-19

254 KB

6 чел.

Задание для курсовой работы.

Написать программу на языке программирования Паскаль для решения следующей задачи (вариант задания индивидуальный). Результаты расчетов должны выводиться на экран и в файл. Оформление графиков и таблиц выполнять средствами математических пакетов (Maple, MathCad). Демонстрационный вариант программы подготовить в среде визуального программирования Delphi.

Проверить решение промежуточных задач средствами математических пакетов. Построить блок-схемы задачи и вспомогательных частей алгоритма. Оценить погрешность выполненных расчетов.

Напряжение U=U(t) на входе транзистора как функция времени описывается дифференциальным уравнением

с начальными условиями (1), где n – последняя цифра номера зачетной книжки, k – коэффициент усиления (см. ниже), fs(t) – периодический сигнал

(рис. 1), mкоэффициент  обратной связи.

Указания и пояснения.

  1.  Дифференциальное уравнение с заданными начальными условиями (задача Коши) решается методом Рунге-Кутта второго порядка с коррекцией (3) на отрезке [0;5] с шагом  h=0.01.(в узлах  tj =jh, j=0,1,2…). Функция fs(t) в правой части представляет собой регулирующий периодический (период Т) сигнал единичной амплитуды (рис 1, номер варианта  n – последняя цифра номера зачетной книжки,). Результаты расчетов—таблица (tj,Uj) и график функции U(t) (на экран и в файл).
  2.  Значение коэффициента усиления k в правой части дифференциального уравнения есть наименьший положительный корень полинома (2), который вычисляется одним из методов нахождения корней уравнения (метод касательных, метод простой итерации).
  3.  Построить спектральные характеристики периодического сигнала fs(t), заданного в аналоговой форме и в виде дискретного сигнала. Длительность сигнала равна 1, период T=k.
  4.   Период функции U(t) определить с помощью функции автокорреляции.

Курсовая работа выполняется в ЧЕТЫРЕ  этапа.

  1.  Средствами математического пакета Maple  решается задача спектрального анализа аналогового и дискретного периодического сигнала fs(t). Сравниваются спектры амплитуд аналогового и дискретного представлений сигнала. (образец выполнения задания – файл вариант11.mws).
    1.  Создается проект в визуальной среде Delphi, решающий эту же задачу для дискретного сигнала, а результаты выполнения сравниваются визуально.
      1.  С помощью языка программирования системы Maple решается задача интегрирования дифференциального уравнения (задача Коши) методом (по варианту задания). Окончательные вычисления в программе зависят от результатов расчета программы в Delphi (следующий пункт). Образец выполнения задания – файл RUTTA.mws.
        1.  Создается проект в визуальной среде Delphi, решающий ту же задачу Коши, результаты расчета которой записываются в файл,  который используется в предыдущем пункте. Выводятся графики результатов вычислений в Maple и Delphi и сравниваются между собой. Явные несовпадения свидетельствуют об ошибке в программе на  Delphi.

Оформление:

  •  Формат А4.
  •  Титул
  •  Постановка задачи
  •  Алгоритмы решения вспомогательных задач
  •  Блок-схемы
  •  Результаты расчетов, графики
  •  Литература

Индивидуальное задание № 1

  1.  Начальные условия: U(0)=0.2
  2.  полином:x^5-8x-1
  3.  коррекция:по средней производной
  4.   метод:касательных 

Часть 1

> restart;

> with(linalg):with(plots):with(plottools):

Warning, the protected names norm and trace have been redefined and unprotected

Warning, the name changecoords has been redefined

Warning, the name arrow has been redefined

> fun:= proc(t) local z ;z:=piecewise(t<0,0,t<1/2,2*t,t<1,2-2*t,0); evalf(z);end;

> fun(t/tau);

> p(x):=x^5-8*x-1;

> Koeff:=fsolve(p(x)=0,x,0..3);

> tau:=Koeff:

> plot(p(x),x=Koeff-0.5..Koeff+0.5,thickness=2,color=black);

> R1:=plot(fun(t),t=0..2.5,thickness=2,linestyle=3,color=blue):

> R11:=plot(fun(t/tau),t=0..2.5,thickness=2,color=black):

> display(R1,R11);

> Fourier_T:=proc(F,T0,TN,k::evaln) local T;

 global A0,Ak,Bk;

   T:=TN-T0;

  A0:=2/T*Int(F(x),x=T0..TN);

  Ak:=2/T*int(F(x)*cos(k*x*2*Pi/T),x=T0..TN):

  Bk:=2/T*int(F(x)*sin(k*x*2*Pi/T),x=T0..TN):

end proc:

> Trig_polynom:=proc(N,T,a0,ak,bk,k::evaln) local n,Pol,A0,A,B;

 global a,b,RisTrig;

 a:=array(0..N);b:=array(0..N);

   A0:=evalf(a0);a[0]:=A0;b[0]:=0;

   A:=seq(evalf(subs(k=n,ak)),n=1..N);

   B:=seq(evalf(subs(k=n,bk)),n=1..N);

    for n from 1 to N do

     a[n]:=A[n];b[n]:=B[n];

    end do;

   Pol:=A0/2+sum(A[k]*cos(2*Pi*k*x/T)+B[k]*sin(2*Pi*k*x/T),k=1..N):

   RisTrig:=plot(Pol,x=-T/2..3*T/2,color=blue,thickness=2):

 RETURN(Pol);

end proc:

> ARR:=proc(n::integer,c) local L,H,ma,mi,k::integer,

  Sim::array(0..n);

  ma:=c[0];mi:=c[0];

  L:=line([0,c[0]],[n,c[n]],thickness=2,color=red);

 for k from 1 to n do

  if c[k]>ma then ma:=c[k];end if;

  if c[k]<mi then mi:=c[k];end if;

 end do;

 H:=ma-mi;

 if H=0 then RETURN(L) end;

 for k from 0 to n do

  if abs(c[k])<H/1000 then

    Sim[k]:=ellipse([k,c[k]],0.2,0.01*H,color=blue);

  else

   Sim[k]:=plottools[arrow]([k,0],[k,c[k]],0.2,0.2,0,color=black);

  end if;

 end do;

 convert(Sim,list);

end:

> Spectr:=proc(n,a,b,c,Risphi) local k,R,phi;

  for k  from 0 to n do

    c[k]:=evalf(abs(I*a[k]+b[k])):

#    print(k,c[k]);

    phi:=evalf(argument(I*a[k]+b[k]));

    R[k]:=[eval(k),eval(phi)];

  end:;

Risphi:=plot(convert(R,list)):

end:

> T:=3;# величина периода

> F_for_all:=proc(t) global tau;fun(t/tau);end proc:;

> Ris1:=plot(F_for_all(t),t=0..T,color=brown,thickness=2,discont=true):display(Ris1);

> Fourier_T(F_for_all,0,T,k):

> a0:=evalf(A0);

> Nk:=20;

> Trig_polynom(Nk,T,A0,Ak,Bk,k):

> display(RisTrig,Ris1);

> Spectr(Nk,a,b,c,'Risphi1');

> display(ARR(Nk,c));

>

> Ampl:=display(ARR(Nk,c)):;

> 2: DTF:=proc (y,N,Y) local n,k,j,p,h;

n:=N-1;

h:=2*Pi/N;

2.1: for k from 0 to N do

p:=0;

  for j from 0 to n do

    p:=p+evalf(y[j]*exp(-I*k*j*h));

  end;

 Y[k]:=evalf(1/N*p);

end:

end:;

> 3: CDTF:=proc(N,Y,y) local n,k,h,p,j;

n:=N-1;

 h:=2*Pi/N;

for k from 0 to n do

p:=0;

  for j from 0 to n do

    p:=p+Y[j]*exp(I*k*j*h);

  end;

 y[k]:=evalf(Re(p));

end:

end:

> Setka_DTF:=proc(Nt,T,F,Y::array) local h,j,x,R,RL;  

  global GrafF;

  h:=T/Nt;

 for j from 0 to Nt do

  x:= evalf(j*h);

  Y[j]:= F(x);

  R[j]:=[j,eval(Y[j])];

 end:

   5.1: R[Nt]:=[j,eval(Y[0])];

    GrafF:=plot(convert(R,list),0..Nt-1,color=brown,

    style=point,symbol=circle):

end:

> Spectr_DTF:=proc(n,C,A,phi) local k,R;global Risphi;

 6.1:  for k  from 0 to n do

    A[k]:=evalf(abs(C[k])):

    phi[k]:=evalf(argument(C[k]));

    R[k]:=[eval(k),eval(phi[k])];

end:;

Risphi:=plot(convert(R,list),thickness=2,color=blue,style=point,symbol=box):

end:

Параметры задачи

> Nt:=19:`число дискретных отсчетов `:

> n:=Nt;N:=Nt-1;# параметры ДПФ

> C:=array(0..n):phi:=array(0..n):A:=array(0..n):;

Y:=array(0..N):

> Setka_DTF(N,T,F_for_all,Y);

> DTF(Y,Nt,C,n):

> Spectr_DTF(n,C,A,phi):

> display(ARR(n,A));

> display(ARR((n-1)/2,A));

> CDTF(Nt,C,F):

> display(GrafF,ARR(n-1,F));

> Setka:=proc(Nt,T,F,Y::array) local h,j,x,R,RL;  

  global GrafF;

  h:=T/Nt;

 for j from 0 to Nt do

  x:= evalf(j*h);

  Y[j]:= F(x);

  R[j]:=[x,eval(Y[j])];

 end:

   5.1: R[Nt]:=[x,eval(Y[0])];

    GrafF:=plot(convert(R,list),0..T,color=brown,

    style=point,symbol=circle):

end:

> F_Discret:=proc (Y,N,a,b,n) local k,j,p,q,h;

 h:=2*Pi/N;

for k from 0 to n do

p:=0;q:=0;

  for j from 0 to N do

    p:=p+evalf(Y[j]*cos(k*j*h));

    q:=q+evalf(Y[j]*sin(k*j*h));

  end;

 a[k]:=2/N*p;b[k]:=2/N*q;

# print(k,a[k],b[k]);

end:

if 2*n=N then b[n]:=0; end;

RETURN(n);

end:;

> 3: Trig:=proc(t,n,T,a,b) local z,k;

z:=a[0]/2+sum(a[k]*cos(k*t*2*Pi/T)+b[k]*sin(k*t*2*Pi/T),k=1..n);

end:

> M:=Nk:

> a:=array(0..M):b:=array(0..M):c:=array(0..M);

> Setka(N,T,F_for_all,Y):

> F_Discret(Y,N,a,b,M):

> Cl:=blue,red,brown:;

> 15: RT:=seq(plot(Trig(t,5*k,T,a,b),t=-0.1..T+0.1,

numpoints=500,color=Cl[k]),k=1..3):

> 16: display(RT,GrafF);

> Spectr(M,a,b,c,'Grafphi');:

> display(ARR(M,c));:

> display(Ampl);

>

>

>

>

>

unit Unit1;

interface

uses

 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

 Dialogs, StdCtrls, ExtCtrls;

type

 TForm1 = class(TForm)

   Button1: TButton;

   Label1: TLabel;

   Button2: TButton;

   Label2: TLabel;

   Button3: TButton;

   ListBox1: TListBox;

   Button4: TButton;

   Button5: TButton;

   Image1: TImage;

   procedure Button1Click(Sender: TObject);

   procedure Button2Click(Sender: TObject);

   procedure Button3Click(Sender: TObject);

   procedure Button4Click(Sender: TObject);

   procedure Button5Click(Sender: TObject);

   procedure FormCreate(Sender: TObject);

 private

   { Private declarations }

 public

   { Public declarations }

 end;

var

 Form1: TForm1;

implementation

{$R *.dfm}

{=====================}

const

N=80;

m=N div 2;

t=3;

hx=T/N;

x0=0;

type

koeff=array[0..m]of real;

dann=array[0..N]of real;

Var

Y:dann;

a,b:koeff;

Tau:real;

h:real;

eps:real;

nkoeff:integer;

 function Pol(t:real):real;

   begin

   Pol:=sqr(sqr(t))*t-8*t-1;

   end;

 function derive(t:real):real;

   begin

   derive:=sqr(sqr(t))*5-8;

   end;

function root(a,b:real):real;

    var

   X0,X1,delta :real;

  begin

   X0:=(a+b)/2;

   repeat

     X1:=X0-Pol(X0)/derive(X0);

     delta:=abs(X1-X0);

     X0:=X1;

   until delta<0.00001;

   root:=X0;

    end;

 function itez(a,b:real):real;

    var

    X0,X1,delta :real;

    const

     lambda=0.0001 ;

  begin

   X0:=(a+b)/2;

   repeat

     X1:=X0-Pol(X0)*lambda;

     delta:=abs(X1-X0);

     X0:=X1;

   until delta<0.00001;

   itez:=X0;

    end;

 function signal(t:real):real;

 var

 z:real;

 begin            

  if t<0 then

   z:=0

   else

     if t<=1/2 then

       z:=2*t

     else

       if t<1 then

       z:=2-2*t

       else z:=0;

   signal:=z;

 end;

 procedure trig(m,N:integer;Y:dann;var a,b:koeff);

 var

   j,k: integer;

   p,q,x,h:real;

 begin

   h:=2*Pi/N;

   for k := 0 to m do

     begin

       p:=0;q:=0;

       for j := 1 to N do

         begin

           x:=j*h;

           p:=p+Y[j]*cos(x*k);

           q:=q+Y[j]*sin(x*k);

         end;

         a[k]:=p*2/N;

         b[k]:=q*2/N;

     end;

 end;

  function Tpol(m:integer;x:real):real;

var

z:real;

k:integer;

begin

 z:=a[0]/2;

  for k:=1 to m do

   z:=z+(a[k]*cos(k*2*Pi/T*x)+b[k]*sin(k*2*Pi/T*x));

  Tpol:=z;

end;

 procedure grafik(numvar:integer);

type

  dann= array[0..N] of real;

var

  L,R,W,H: integer;

  X: dann;

  Y: dann;

  k:integer;

  ymin,ymax:real;

  Mx,My:real;

  x0,y0: integer;

  posx,posy:integer;

  Nkf:string;

  tx:real;

  ypol:real;

  procedure min_max(N:integer;Y:dann; var min, max:real);

  var

    k: integer;

  begin

     min:=Y[0];max:=Y[0];

     for k := 1 to N do

     if Y[k]> max then

        max:=Y[k]

       else if Y[k]< min then

        min:=Y[k];

     {увеличим диапазон}

      max:=max+0.1;

      min:=min-0.1;

  end;

begin

  L:=20;

  R:=form1.image1.clientHeight-20;

  W:=form1.image1.Width-50;

  H:=form1.image1.clientheight-50;

  case numvar of

1: begin

     for  k:=0 to N do

       X[k]:=signal(hx*k/Tau);

     min_max(N,X,ymin,ymax);

     Mx:=W/N;

     My:=H/(ymax-ymin);

     x0:=L;

     y0:=R-abs(Round(ymin*My));

     with form1.image1.Canvas do

     begin

       pen.Color:=clblue;

       font.Name:='Tahoma';

       font.Size:=8;

       font.Color:=claqua;

       for k:=0 to N do

        begin

          posx:=x0+round(k*Mx);

          posy:=y0-round(X[k]*My);

          textout(posx-2,posy-8,'o');

          Pixels[posx,posy]:=clRed;

        end;

       pen.Width:=2;

       Moveto(L,R);lineto(L,R-H);

       moveto(x0,y0);lineto(x0+W,y0);

       font.Color:=clred;

       textout(x0+W,y0+10,'x');

       textout(x0+W,y0-20,floattostrF(T,ffFixed,3,0));

       textout(x0+round(W*Tau/T), y0-20,'tau='+ floattostrF (Tau,ffFixed, 6, 3));

       Nkf:=Inputbox('Число коэффициентов полинома','например 10','20');

       Nkoeff:=strtoint(Nkf);

       pen.Color:=clNavy;

       tx:=0;

       ypol:=Tpol(Nkoeff,tx/Tau);

        posx:=x0+round(0*Mx/2);

        posy:=y0-round(ypol*My);

       moveto(posx,posy);

       for k:=1 to 2*N do

       begin

         tx:=hx*k/2;

         ypol:=Tpol(Nkoeff,tx/Tau);

         posx:=x0+round(k*Mx/2);

         posy:=y0-round(ypol*My);

         lineto(posx,posy);

       end;

     end;

   end;

  2: begin

       for  k:=0 to m do

        Y[k]:=sqrt(sqr(a[k])+sqr(b[k]));

        min_max(m,Y,ymin,ymax);

        Mx:=W/m;

        My:=H/(ymax-ymin);

        x0:=L;

        y0:=R-abs(Round(ymin*My));

     with form1.image1.Canvas do

     begin

        pen.Width:=2;

        pen.Color:=clred;

        Moveto(L,R);lineto(L,R-H);

        moveto(x0,y0);lineto(x0+W,y0);

        pen.Width:=5;

        pen.Color:=clblue;

       for  k:=0 to m do

        begin

         posx:=x0+round(k*Mx);

         posy:=y0-round(Y[k]*My);

         moveto(posx,y0);

         lineto(posx,posy);

        end;

     end;

     end;

  end;

end;

{ ==========================}

  

procedure TForm1.Button1Click(Sender: TObject);

 const

 a=0;

 b=3;

begin

Tau:=root(a,b);

Label1.caption:='корень='+floattostr(Tau);

button1.Visible:=false;

button3.Visible:=true;

button3.SetFocus;

button4.Visible:=false;

button5.Visible:=false;

end;

procedure TForm1.Button2Click(Sender: TObject);

 const

 a=0;

 b=3;

begin

Tau:=itez(a,b);

Label2.caption:='корень='+floattostr(Tau);

end;

procedure TForm1.Button3Click(Sender: TObject);

var

 j: Integer;

 s1,s2,s3:string;

begin

for j := 0 to N  do

 Y[j]:=signal(x0+j*hx);

 Y[N]:=(Y[0]+Y[N])/2;

 Trig(m,N,Y,a,b);

 for j := 0 to m do

   begin

     str(j:2,s1);

     str(a[j]:10:5,s2);

     str(b[j]:10:5,s3);

     listbox1.items.Add(s1+s2+s3);

   end;

 Label1.Caption:='Вычислены коэффиченты Фурье';

   button3.Visible:=false;

   button4.Visible:=true;

   button4.SetFocus;

end;

procedure TForm1.Button4Click(Sender: TObject);

begin

form1.Caption:='Построение графиков';

label1.Caption:='Графики сигналов и полиномов';

button4.Visible:=false;

Button5.Visible:=true;

button5.SetFocus;

   Label2.Visible:=false;

  listbox1.Visible:=false;

   grafik(1); { 1 - сигнал точками, полином - линией}

end;

procedure TForm1.Button5Click(Sender: TObject);

begin

 Form1.Caption:='Спектр амплитуд';

   {здесь поместим алгоритм построения спектра амплитуд}

   Label1.Caption:='График спектра амплитуд';

   Button5.Visible:=false;

   form1.image1.Canvas.FillRect(rect(0,0,clientwidth,clientheight));

   grafik(2);

end;

procedure TForm1.FormCreate(Sender: TObject);

begin

button3.visible:=false;

button4.visible:=false;

button5.visible:=false;

end;

end.

Часть 2

> restart;

> with(linalg):with(plots):

pp:=(x,y)->[x,y];

Warning, the protected names norm and trace have been redefined and unprotected

Warning, the name changecoords has been redefined

> fun:= proc(t) local z ;z:=piecewise(t<0,0,t<1/2,2*t,t<=1,2-2*t,0); evalf(z);end;

> plot(fun(t),t=-1..2,thickness=2,color=brown):;

> p(x):=x^5-x*8-1;

> Koeff:=fsolve(p(x),x,0..2);

> T:=Koeff;

> tau:=1;

> Period:=proc(t,t0,tau,T,f) local x,z;

x:=evalf(t-t0-floor((t-t0)/T)*T);

z:=fun(x/tau);evalf(z);

end;

> plot(Period(x,0,tau,T,fun),x=-1..3,thickness=2,color=brown);

> #==============================================================================

>

> Koc:=2;Nzac:=1;

> ur:=diff(U(t),t);

> F:=Nzac*(cos((4+Nzac/10)*t+U(t))+Koeff*Period(t,0,tau,T,f)-Koc*U(t));

> RK:=dsolve({ur=F,U(0)=0.2},U(t),type=numeric,output=listprocedure);

> fU:=subs(RK,U(t));

> T0:=5;Nt:=50;h:=T0/Nt;

> Tx:=array(0..Nt):U:=array(0..Nt):U_map:=array(0..Nt);

> for j from 0 to Nt do

x:=j*h;z:=fU(x);Tx[j]:=x;U[j]:=z;U_map[j]:=z;

#print(x,z);

od:

> RisU:=zip(pp,Tx,U):

> RU:=plot(RisU):

> display(RU):;

> #====================================

> RisU:=zip(pp,Tx,U):

> whattype([RisU]);

> RU0:=plot(RisU,style=point,symbol=cross):

> display(RU0):;

Определение периода с помощью функции автокорреляции

> R:=proc(Nt,T::array,U::array)

local k,j,t,z,Af::array,Uf::array,RAf,RisAf;

Af:=array(0..Nt);Uf:=array(0..2*Nt);

for j from 0 to Nt do Uf[j]:=U[j];Uf[j+Nt]:=U[j];

end;

for j from 0 to Nt do

t:=0;

for k from 0 to Nt do

t:=t+evalf(Uf[k]*Uf[k+j]);

end;

Af[j]:=evalf(t/Nt);

end;

RAf:=zip(pp,T,Af);RisAf:=plot(RAf):

display(RisAf):;

end:

> R(Nt,Tx,U):;

>

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++=

>

> fn:=`E:\\WORK\\Архипкин.txt`;

>

>

++++++++++++++++++++++++++++++++++++++++++++++++++++

> L:=readdata(fn,2):;

Nstrok:=vectdim(L):;

> U_n:=array(1..Nstrok);:

T_n:=array(1..Nstrok);

> for j from 1 to Nstrok do

T_n[j]:=L[j,1];

U_n[j]:=L[j,2];

#print(j,T_n[j],U_n[j]);

od:

> u1:=zip(pp,T_n,U_n):

> RU1:=plot(u1,style=point,symbol=cross,color=black):

> display(RU,RU1);

> #printf("%s",`  №      t      U_map    U_pas     разн \n`);

for k from 0 to Nt do t:=Tx[k]:del:=U_map[k]-U_n[k+1];

#printf("% 3.0f  % 6.2f % 8.4f  % 8.4f % 8.4f \n",k,t,U_map[k],U_n[k+1],del):

end:;

unit final;

interface

uses

 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

 Dialogs, Menus, StdCtrls;

type

 TForm1 = class(TForm)

   MainMenu1: TMainMenu;

   N1: TMenuItem;

   N2: TMenuItem;

   N3: TMenuItem;

   Label1: TLabel;

   ListBox1: TListBox;

   Label2: TLabel;

   savedialog1: TSaveDialog;

   N4: TMenuItem;

   N5: TMenuItem;

   N6: TMenuItem;

   Label3: TLabel;

   Label4: TLabel;

   procedure N3Click(Sender: TObject);

   procedure N2Click(Sender: TObject);

   procedure N5Click(Sender: TObject);

   procedure N6Click(Sender: TObject);

 private

   { Private declarations }

 public

   { Public declarations }

 end;

var

 Form1: TForm1;

implementation

{$R *.dfm}

{=====================================================}

const

  U0=0.2;

  nzac=1;

  koc=2;

  hintegr=0.1;

  Npoint=50;

var

      tau:real; {период сигнала}

      Koeff:real; {равен периоду}

      min,sec:byte;

      frez:string;

      ftxt:text;

{===================корень полинома==============}

{фунция, задающая вычисление полинома в точке}

function polynom(t:real):real;

begin

  polynom:=sqr(sqr(t))*t-8*t-1;

end;

{процедуры метода простой итерации}

function derive(x:real):real;

begin

 derive:=sqr(sqr(x))*5-8;

end;

procedure Iter(a,b:real;var root:real;var K:integer);

const

 eps=0.0000001;{погрешность определения корня}

 Q0=1.5; {нормирующий множитель для ламбда}

var

 lambda:real;

 g:real;

 x,x0:real;

begin

  g:=derive(b);

   form1.label2.caption:='max производной =  '+ floattostrF (g, ffGeneral, 5, 1);

   lambda:=1.99/g;

   x:=(a+b)/2;

   k:=0;

   repeat

     x0:=x;

     x:=x0-lambda*polynom(x0);

     form1. listbox1.Items.Add(floattostrF(x,ffGeneral, 12, 9));

     k:=k+1;

   until abs(x-x0)<eps;

   root:=x;

end;

function signal(t:real):real;{сигнал 11-го варианта}

 var

 z:real;

 begin            

  if t<0 then

   z:=0

   else

     if t<=1/2 then

       z:=2*t

     else

       if t<1 then

       z:=2-2*t

       else z:=0;

   signal:=z;

 end;

function Period(x,T:real):real;

 var

   z:real;

begin

  z:=x-trunc(x/T)*T;{выделение дробной части}

  Period:=signal(z);

end;

{====================правая часть диф. уравнения===}

function F(t,U:real):real;

begin

 F:=Nzac*  (cos((4+nzac/10)*t+U)+Koeff*Period(t,Koeff)-Koc*U);

end;

procedure difur;

var

 j:integer;

 U,t:real;

 U1:real;

 strU,strt:string;

begin

 form1.listbox1.Clear;

  U:=U0;

  t:=0;

  Koeff:=Tau;

  for j :=0 to Npoint+1 do

  begin

         strt:=floattostrF(t,ffGeneral, 7, 4);

    strU:=floattostrF(U,ffGeneral, 7, 4);

    form1. listbox1.Items.Add(strt+'   '+ stru);

    writeln(ftxt,t:8:2,' ',U:8:3);

    {Метод Эйлера}

         U1:=U+hintegr*F(t,U);

         U:=U1;

         t:=t+hintegr;

  end;

end;

procedure TForm1.N2Click(Sender: TObject);

begin

 if savedialog1.Execute then

  begin

    frez:=savedialog1.FileName;

    label1.caption:='эапись в файл '+#10+frez;

  end;

 assignfile(ftxt,frez);

 rewrite(ftxt);

end;

procedure TForm1.N3Click(Sender: TObject);

begin

form1.Close;

closefile(ftxt);

end;

procedure TForm1.N5Click(Sender: TObject);

 var

a,b:real;

kiter:integer;

begin

   Form1.Caption:='Вычисляем корень полинома';

    b:=3;

    a:=0;

   {здесь вызов алгоритма вычисления корня уравнения}

   Iter(a,b,Tau,Kiter);{вызов процедуры метода итераций}

   Label3.Caption:='корень равен '+floattostr(Tau);

   Label4.Caption:='число итераций '+inttostr(Kiter);

end;

procedure TForm1.N6Click(Sender: TObject);

begin

difur;

end;

end.


 

А также другие работы, которые могут Вас заинтересовать

50018. Кодирование сообщений 217.5 KB
  Анализ пропускной способности дискретного канала. Анализ пропускной способности непрерывного канала. Задание и указания обучающимся по подготовке к выполнению практического занятия На самостоятельной работе повторить: количество информации переданной по дискретному и непрерывному каналам...
50019. Теория передачи информации 62 KB
  Расчет пропускной способности дискретного канала. На основе изученных на предыдущих занятиях и самостоятельной работе пропускной способности дискретного канала и инженерных методов расчета ее в среде MthCD произвести расчет и анализ пропускной способности дискретного канала. Пропускная способность дискретного mичного канала определяется выражением: где: V скорость модуляции [Бод] p вероятность ошибки сигналов в канале m число вариантов кодовых символов основание кода например m=2 4 8 16 . Пропускная способность двоичного...
50021. Становление личности. Проблемы самоидентификации и самоактуализации 16.08 KB
  Становление личности есть процесс социализации человека, который состоит в освоении им своей родовой, общественной сущности; это освоение всегда осуществляется в конкретно-исторических обстоятельствах жизни человека. Становление личности связано с принятием индивидом выработанных в обществе социальных функций и ролей
50022. Нечеткая логика 67 KB
  Согласно заданным вариантам разработать программу на любом алгоритмическом языке, способную: А. Различать степени изменения лингвистической переменной в трех степенях – «Очень – Нормально – Слабо» Б. Изменять порог чувствительности
50023. Определение отношения теплоёмкости газа 91 KB
  Цель работы Измерение отношения теплоемкости воздуха при постоянном давлении и при постоянном объеме. Расчетная формула Отношение определяется по расчетной формуле: где h1 разность уровней в коленах манометра после первой установки давления h2 разность уровней в коленах манометра после второй установки давления Среднее значение для искомого отношения находится по формуле: Выполнение работы № опыта h1 см h2 см 16 10 106 122 08 107 104 07 107 13 14...
50024. Изучение работы источника напряжения 88 KB
  Изучение работы источника напряжения Цель: Изучение работы источника напряжения. Краткие теоретические сведения Принципиальная схема работы любого источника напряжения приведена на рис. 1 где e ЭДС источника r его внутреннее сопротивление R сопротивление внешней цепи нагрузка. 2 Выражая из 1 сопротивление R и подставляя в 2 получим зависимость напряжения на нагрузке от силы тока в цепи...
50025. Измерение сопротивления мостом постоянного тока 39 KB
  Измерение сопротивления мостом постоянного тока Цель работы: ознакомиться с методом измерения сопротивления с помощью моста постоянного тока. Краткие теоретические сведения Одним из распространенных методов определения сопротивления является метод моста постоянного тока. В другие плечи включаются два резистора с известными сопротивлениями R1 и R2 и магазин сопротивлений RМ. Подключить последовательно сопротивления Rx1 и Rx2.
50026. Исследование процессов заряда и разрядки конденсатора и определение емкости конденсатора 255.5 KB
  Исследование процессов заряда и разрядки конденсатора и определение емкости конденсатора Цель работы: изучить временную зависимости напряжения на конденсаторе при подключении или отключении источника постоянной ЭДС и определить емкость конденсатора. Краткие теоретические сведения Рассмотрим процессы заряда и разрядки конденсатора при подключении или отключении источника постоянной ЭДС e0 в схеме представленной на рис. При включении ЭДС появлении импульса ток при заряде конденсатора протекает по внутреннему сопротивлению источника r и...