49011

Технология изготовления ходовых винтов

Лекция

Производство и промышленные технологии

В металлорежущих станках, прессах и других машинах, где винтовые механизмы служат для преобразования вращательного движения в поступательное, применяют ходовые винты. Различают ходовые винты скольжения с прямоугольной, трапецеидальной и треугольной резьбой и ходовые винты качения полукруглой или арочной формы.

Русский

2014-12-20

941 KB

173 чел.

Лекция 18

Тема №6. Технология изготовления ходовых винтов.

Назначение и конструкция. В металлорежущих станках, прессах и других машинах, где винтовые механизмы служат для преобразования вращательного движения в поступательное, применяют ходовые винты.

В станкостроении применяют винты пяти классов точности: 0; 1; 2; 3 и 4: 0–2-го классов точности – для прецизионных станков и станков повышенной точности (координатно-расточных, резьбошлифовальных, зубообрабатывающих); 3-го класса точности – для станков нормальной точности (токарно-винторезных, резьбофрезерных); 4-го класса точности – для выполнения установочных перемещений в станках.

Ходовые винты могут содержать различные поверхности (рис. 1.): опорные шейки (Б, В) и упорные буртики (Г), которые служат для установки ходового винта в отверстие выходного вала коробки подач и в подшипник скольжения (правая опора); резьбовую поверхность (Д), которая служит для непосредственного соединения с сопряженной гайкой и преобразования движения; посадочные шейки (А) для установки зубчатых колес и шкивов, которые служат для передачи крутящего момента на винт посредством шлицевых поверхностей, шпоночных пазов, поперечных отверстий.

Рис. 1. Чертеж ходового винта металлорежущего станка с некоторыми требованиями по форме, расположению и шероховатости поверхностей

Различают ходовые винты скольжения с прямоугольной, трапецеидальной и треугольной резьбой и ходовые винты качения полукруглой или арочной формы.

Основные технические требования. Ранее приведенные технические требования к поверхностям ступенчатых валов могут быть предъявлены и к аналогичным поверхностям ходовых винтов. Основное конструктивное отличие ходового винта – наличие на его поверхности ходовой резьбы, поэтому ниже приведен ряд технических требований, которые предъявляют к таким поверхностям (табл. 1).

Материалы и методы получения заготовок. Ходовые винты 0 – 2-го классов точности без термического упрочнения изготовляют из сталей У10А, А40Г, с термическим упрочнением – из сталей ХВГ, 7ХГ2ВМ, 40ХФА. Ходовые винты качения изготовляют из сталей ХВГ, 30Х3ВА с закалкой до твердости 59...63 HRC.

Таблица 1. Основные технические требования по точности обработки

ходовых винтов

Вид допуска

Класс точности

Величина допуска

Отклонение наружного диаметра винта, мкм

0-2

По 6-му квалитету

3

По 7-му квалитету

4

По 8-му квалитету

Погрешность шага резьбы, мкм

0

±2

1

±3

2

±6

3

±12

4

±25

Накопленная погрешность шага на всей длине винта, мкм

0

8

1

20

2

40

3

80

4

150

Отклонение половины угла профиля резьбы (при шаге 6... 10 мм), мин

0

10

1

12

2

18

3

25

4

Овальность сечения по среднему диаметру резьбы (на длине винта 1000...2000 мм), мкм

0

40

1

60

2

100

3

150

4

250


Продолжение таблицы 1

Вид допуска

Класс точности

Величина допуска

Шероховатость поверхности резьбы Ra, мкм

0

0,16...0,08

1

0,32...0,16

2

1,25...0,63

3-4

2,5... 1,25

Шероховатость опорных шеек Ra, мкм

2

0,63...0,32

Заготовки получают разрезкой прутка с последующей правкой на правильных станках. Заготовки для ходовых винтов 0–2-го классов точности правке не подвергают. Их получают резкой калиброванного проката. Допуск биения наружной поверхности заготовки при этом не должен превышать 0,5 мм на всей длине.

Базы и базирование. Основными базами ходовых винтов, как большинства валов, являются поверхности опорных шеек, а вспомогательной базой – резьбовая поверхность. На первой операции в качестве черновой базы используют наружную поверхность прутка (двойная направляющая технологическая база) и торец (упорная технологическая база). На последующих операциях по обработке наружных поверхностей технологическими базами служат поверхности центровых отверстий (искусственные технологические базы), а наружную поверхность используют как дополнительную технологическую базу, поскольку заготовка не является жесткой в поперечном сечении.

Технологический маршрут обработки. Недостаточная жесткость ходовых винтов, связанная с особенностью их формы, может привести к значительным деформациям при обработке. Поэтому, как и базирование, технологические маршруты обработки ходовых винтов и валов отличаются. В табл. 2 приведен типовой технологический маршрут обработки ходового винта.

Таблица 2. Технологический маршрут обработки ходового винта

№ операции

Наименование и содержание операции

Технологические базы

Оборудование

005

Токарная – обработка торцовых поверхностей и центрование

Наружная поверхность и торец

Токарный станок

010

Токарная – черновое точение наружных поверхностей

Поверхности центровых отверстий и наружная поверхность

Токарный станок

015

Термическая – старение

Электрическая печь

020

Токарная – срезка центровых отверстий и центрование

Наружная поверхность

Токарный станок

025

Токарная – чистовая токарная обработка наружных поверхностей

Поверхности центровых отверстий и наружная поверхность

Токарный станок

030

Шпоночно-фрезерная – фрезерование шпоночного паза

Наружная поверхность

Шпоночно-фрезерный станок


Продолжение таблицы 2

№ операции

Наименование и содержание операции

Технологические базы

Оборудование

035

Шлифовальная – предварительное шлифование шеек

Поверхность центровых отверстий и наружная поверхность

Кругло-шлифовальный станок

040

Токарная – предварительное нарезание резьбы

Поверхности центровых отверстий и наружная поверхность

Токарно-винторезный станок

045

Термическая – старение

Электрическая печь

050

Токарная – исправление центровых отверстий

Наружная поверхность

Токарный станок

055

Шлифовальная – получистовое шлифование наружных поверхностей

Поверхности центровых отверстий и наружная поверхность

Кругло-шлифовальный станок

060

Шлифовальная – получистовое шлифование поверхностей резьбы

Поверхности центровых отверстий и наружная поверхность

Резьбо-шлифовальный станок

065

Шлифовальная – чистовое шлифование наружных поверхностей

Поверхности центровых отверстий и наружная поверхность

Кругло-шлифовальный станок

070

Шлифовальная – чистовое шлифование поверхностей резьбы

Поверхности центровых отверстий и наружная поверхность

Резьбо-шлифовальный станок

075

Токарная – доводка поверхностей опорных шеек

Поверхности центровых отверстий и наружная поверхность

Токарный станок

Контроль поверхностей

В процессе изготовления, а также по окончании обработки производят контроль поверхностей валов. Диаметральные размеры контролируют штангенциркулями, микрометрами, посредством отсчетного устройства скобы рычажной (CP) и другими приборами. Правильность формы поверхностей (отклонение от круглости и цилиндричности) и их относительного положения контролируют по схемам, приведенным в табл. 3.

Наиболее сложной у валов является резьбовая поверхность, особенно ходовые резьбы. Для контроля среднего диаметра наружной резьбы применяют микрометры со вставками: МВМ – для измерения метрических и дюймовых резьб, МВТ – для измерения трапецеидальных резьб и фасонных деталей (ГОСТ 4380-81). Погрешность измерения таким прибором составляет 0,1...0,15 мм.

Таблица 3. Методы и схемы контроля валов

Метод измерения

Схема

Измерение отклонений от круглости

Прибором с прецизионным вращением (кругломером)

Координатно-измерительным прибором – двух- или трехкоординатным (трехкоординатной измерительной машиной)

Измерительным преобразователем с базированием измеряемой детали в центрах

Метод измерения

Схема

Измерение отклонений от цилиндричности

С базированием измеряемой детали в центрах (измерительной головкой – а, поверочной плитой – б и несколькими измерительными головками – в)


Продолжение таблицы 3

Измерение радиального биения

С базированием измеряемой детали в центрах(измерительной головкой)

С базированием измеряемой детали в патроне, имеющем прецизионное вращение (измерительной головкой)

С базированием измеряемой детали в призме (измерительной головкой)

Наиболее точным при измерении среднего диаметра d2 резьбы является метод с использованием трех проволочек (рис. 2, а), когда во впадины резьбы вкладывают цилиндрические калибры – проволочки, диаметр dn которых определяют по формуле

,

где р – шаг резьбы, мм;  – половина угла профиля. При этом проволочки будут касаться боковой поверхности резьбы в зоне среднего диаметра. Измерив размер по проволочкам, определяют средний диаметр резьбы по формуле

d2 = М – А,

где Мразмер, замеренный с проволочками; А – поправка (может быть выбрана по таблицам): А = 3dn – 0,866p.

Рис. 2. Измерение среднего диаметра резьбы с использованием трех (а), двух (б) и одной (в) проволочек

При измерении с использованием трех проволочек резьб с углами подъема более 7° дополнительно определяют поправку методом последовательных приближений. Этот метод при диаметре резьбы 18...50 мм дает погрешность измерения 0,008...0,03 мм. Применяют также методы с использованием двух или одной проволочек (рис. 2 б, в). Тогда Р – размер, замеренный с использованием двух проволочек, Q – с использованием одной проволочки.

Средний и внутренний диаметр резьбы можно измерить на универсальном или инструментальном микроскопе теневым способом или с помощью ножей. На этих же микроскопах контролируют элементы профиля резьбы: шаг, угол профиля.

Для определения погрешности шага резьбы ходового винта используют прибор БВ-542, схема которого представлена на рис. 3. Принцип работы этого прибора основан на непрерывном сравнении винтового движения образующих контролируемого и образцового винтов.



Рис. 4. Эскиз ходового винта токарного станка 16К20

Таблица 4. Маршрут изготовления ходового винта токарного станка 16К20 в условиях серийного производства

операции

Наименование операции

Содержание операции

Технологическая база

Модель

005

Токарно-винторезная

Подрезать и зацентрировать торцы и снять фаски с двух сторон

Наружная поверхность

Токарно-винторезный станок 16К20

010

Токарно-винторезная

Обточить поверхность А, подрезать торец Г, прорезать канавку и снять фаски

Центровочные отверстия и торец

Токарно-винторезный станок 16К20

015

Токарно-винторезная

Обточить канавку и снять фаски с другой стороны

Центровочные отверстия и торец

Токарно-винторезный станок 16К20

020

Кругло-шлифовальная

Шлифовать наружную поверхность ходового винта в размер диаметром 44,5 мм h 6

Центровочные отверстия

Кругло-шлифовальный станок

025

Токарно-винторезная

Нарезать трапецеидальную резьбу Р=12 мм с припуском 0,5 мм

Центровочные отверстия и торец

Токарно-винторезный станок 1622Б


Продолжение таблицы 4

операции

Наименование операции

Содержание операции

Технологическая база

Модель

030

Токарно-винторезная

Точить канавку трапецеидальной резьбы с припуском 0,12 мм, снять фаску 7°30'

Центровочные отверстия и торец

Токарно-винторезный станок 1К62В

035

Вертикально-сверлильная

Сверлить отверстие диаметром 8 мм под штифт

Наружная поверхность

Вертикально-сверлильный станок 2Н125

040

Слесарная

Зачистить заусенцы, промыть и протереть

Слесарный верстак

045

Кругло-шлифовальная

Шлифовать до диаметра 44 мм -0,017

Центровочные отверстия

Кругло-шлифовальный станок ЗМ151В

050

Токарно-винторезная

Править винт с припуском до 0,05 мм, проточить боковые стороны резьбы с припуском 0,05 мм, снять фаски 0,25 мм по ниткам резьбы

Центровочные отверстия

Токарно-винторезный станок 1622В

055

Токарно-винторезная

Нарезать трапецеидальную резьбу Р=12 мм окончательно

Центровочные отверстия

Токарно-винторезный станок 1622В

060

Кругло-шлифовальная

Шлифовать поверхность диаметром 28 мм h6 окончательно

Центровочные отверстия

Кругло-шлифовальный станок ЗМ151В

065

Контрольная

Проконтролировать ходовой винт

Центровочные отверстия

Контрольно-измерительная установка

070

Слесарная

Протереть винт и покрыть антикоррозионным раствором

Слесарный верстак


Рис. 3. Схема прибора для контроля погрешности шага резьбы ходового винта: 1, 6 — передняя и задняя бабки для крепления винта; 2, 5 — образцовый и контролируемый винты; 3, 4 — кинематическая передача; 7 — рычаг; 8 — индикатор; 9 — корпус прибора; 10 — щуп образца


 

А также другие работы, которые могут Вас заинтересовать

44723. Participle (Passive and Perfect Forms) 33.83 KB
  Rdio supplies the communiction service which is so essentil to the modern world nd meeting these needs it hs become rpidly developing industry itself. It is from rdio tht the subject of electronics ws born which being pplied to utomtion brought such remrkble chnges to the technique of tody. The fstest most relible wy to detect n rtificil stellite nd to determine its orbit is by rdio.
44724. Nominative Absolute Participle Clause. Participle+Infinitive 54 KB
  PrticipleInfinitive TEXT 12 The Fundmentl Problems of Television. The word “television†by common cceptnce hs come to men the essentilly instntneous trnsmission either by wire or rdio of moving pictures or imges. Essentilly three steps re involved in television nmely: 1 the nlysis of the light imge into electricl signl; 2 the trnsmission of the electricl signl to the points of reception; nd 3 the synthesis of visible reproduction of the originl imge from the electricl signl. nswer the questions: Wht does the word “televisionâ€...
44725. Infinitive (Passive and Perfect Forms) 80.5 KB
  From the first electronic digital computers of the forties to to-day’s versatile computers and most up-to-date microcomputers, very little has changed as far as basic computer operation is concerned. In the last thirty years, vast improvements in the size, speed and capabilities of computers have taken place
44726. Complex Subject 76.71 KB
  The low temperture physics dels with vrious phenomen occurring tempertures in the region of bsolute zero 273єC. The lowest temperture on Erth is known to hve been registered in the ntrctic bout 80єC. Still lower tempertures re climed to be found on other plnets.
44727. Complex Object. For + Noun (Pronoun) + Infinitiv 83.69 KB
  On the one hnd light ws pictured s wve motion of some sort nd on the other s flight of fstmoving prticles. The wve theory of light seemed to hve defeted the prticle theory when it explined the pproximtely rectiliner propgtion. It ws found tht light could cuse toms tо emit electrons nd tht when light relesed n electron from n tom the energy possessed by the electron very gretly exceeded tht which the tom could ccording to electromgneticwve theory hve received.
44728. Gerund. Gerund clauses 63.5 KB
  Tsiolkovsky 18571935 Mnkind will not remin on erth forever. Tsiolkovsky ws selftught mn. The min problem Tsiolkovsky hd been working t for mny yers ws creting theory of interplnetry trvel. 1 It ws Tsiolkovsky who suggested the ide of multistge rocket nd of mnmde stellite which could serve s lbortory for studying the universe.
44729. Verbals 51.31 KB
  They do this with n efficiency pproching one hundred per cent s compred with mximum of bout one per cent of other lsers. Semiconductor lsers re sure to open up gret prospects for solving vrious scientific nd technicl problems. Clcultions nd experiments show tht lredy superhrd substnces dimonds rubies nd so on nd hrd lloys cn be worked profitbly by ruby lsers for exmple.
44730. Modals + Perfect Infinitives. Subjunctive Mood. Conditional Sentences 56.05 KB
  By closer observtion of the spectrum however we find tht the spectrum is crossed by n immense number of fine drk lines mounting to mny thousnds. When we investigte the drk lines in the spectrum of the Sun we find tht these correspond line by line to the spectr emitted in the lbortory by vrious elements iron clcium hydrogen etc. From this it follows tht the light from the Sun must hve gone through clouds of these toms somewhere nd in respect to such substnces s iron or clcium or most other elements this must hve hppened on the Sun...
44731. Emphatic Inversion 47 KB
  To get even one report from computer requires the prior ppliction of gret del of intensive skilled humn lbour. Given below re some fundmentls concerning computer opertions. Computers perform with gret speed nd ccurcy mny opertions tht up to now hve trditionlly been done only by humn lbour.