49094

Диэлектрическая линзовая антенна

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Расчет параметров линзы. Краткие теоретические сведения Линзовая антенна состоит из электромагнитной линзы и облучателя. Назначение линзы трансформировать фронт волны создаваемый облучателем в плоский и сформировать требуемую диаграмму направленности ДН. Принцип работы линзовых антенн основан на разности скоростей фазового фронта электромагнитной волны в свободном пространстве и непосредственно в теле линзы.

Русский

2013-12-20

635 KB

21 чел.

Федеральное агентство по образованию РФ

РГРТУ

Кафедра РУС

Курсовая работа

по дисциплине: «Распространение радиоволн и антенно-фидерные устройства»

на тему: «Диэлектрическая линзовая антенна»

Выполнил:

Ст.гр. 718

Глазков А.Д.

Проверил:

Елумеев В.И.

Рязань, 2010

Содержание

[1]
1. Задание

[2]
2. Краткие теоретические сведения

[3]
3. Расчет параметров линзы.

[4]
4. Расчёт облучателя

[5]
5. Расчет диаграммы направленности антенны

[6]
6. Конструкция антенны

[7] 7. Заключение

[8] 8. Список литературы


1. Задание


2. Краткие теоретические сведения

Линзовая антенна состоит из электромагнитной линзы и облучателя. Линза представляет собой радиопрозрачное тело, имеющее коэффициент преломления, отличный от единицы. Назначение линзы трансформировать фронт волны, создаваемый облучателем, в плоский и сформировать требуемую диаграмму направленности (ДН). Принципиально линзовые антенны можно использовать для формирования самых различных диаграмм направленности.

Принцип работы линзовых антенн основан на разности скоростей фазового фронта электромагнитной волны в свободном пространстве и непосредственно в теле линзы. Фазовая скорость распространения волны в линзе Vф может быть больше или меньше скорости света с. В соответствии с этим, линзы подразделяются на ускоряющие и замедляющие.

Линза, в которой выполняется условие Vф > с, называется ускоряющей. Она может быть выполнена в виде набора металлических пластин, отстоящих друг от друга на расстоянии а и параллельных вектору Е создаваемой облучателем электромагнитной волны (рис. 1, а, б).

Если при этом расстояние между металлическими пластинами а выбрать исходя из условия: λ/2<a<λ,  где λ - длина волны излучения, то фазовая скорость распространяющейся между пластинами волны, также как и для волновода, будет определяться выражением:

 откуда видно, что Vф > с. Коэффициент преломления n таких линз лежит обычно в пределах: 0 < n < 0,86. Рассмотренная ускоряющая линза называется металлопластинчатой.

В ускоряющих линзах (рис.1) выравнивание фазового фронта волны происходит за счет того, что участки волновой поверхности часть своего пути проходят в линзе с повышенной фазовой скоростью. Эти участки пути различны для разных лучей. Чем сильнее луч отклонен от оси линзы, тем больший участок пути он проходит с повышенной фазовой скоростью внутри линзы. Таким образом, профиль ускоряющей линзы должен быть вогнутым по отношению к фронту падающей волны. Выходной раскрыв линзы, как правило, делается плоским.

Линза, в которой выполняется условие Vф < с, называется замедляющей. Такие линзы выполняются из различных искусственных диэлектрических материалов. Как известно, фазовая скорость электромагнитной волны в диэлектрике определяется выражением

где ε - относительная диэлектрическая проницаемость диэлектрика; µ - его относительная магнитная проницаемость. Коэффициент преломления n таких линз обычно находится в пределах: 1,1 < n < 2,0. Замедляющая линза (рис. 2) имеет выпуклый профиль по отношению к фронту падающей волны.

Рис. 1.

В этом случае центральный луч, проходя больший путь в линзе по сравнению с крайними лучами, задерживается в линзе. В результате на плоский выходной раскрыв линзы все лучи придут в одной фазе.

В зависимости от требуемой формы диаграммы направленности выходной излучающий раскрыв линзы может быть круглой или прямоугольной формы, а сама линза в этом случае будет либо сферическая (рис. 1, а; 2, а), либо цилиндрическая (рис.1, б; 2, б). Сферическая линзовая антенна с круглым выходным раскрывом используется для формирования очень узкой (игольчатой) ДН с одинаковой шириной луча в главных плоскостях. В качестве облучателей сферических линзовых антенн могут использоваться различные виды однонаправленных излучателей: различные рупоры, открытые концы волноводов, вибраторы с пассивным рефлектором и т.п. Если требуется сформировать веерообразную ДН с разной шириной луча в главных плоскостях, то используют цилиндрическую линзовую антенну, имеющую прямоугольный выходной раскрыв. В этом случае облучатель может быть выполнен в виде линейной системы элементарных синфазных излучателей (щелей, вибраторов), питаемых прямоугольным волноводом. При этом цилиндрическая линза формирует ДН только в одной плоскости, в другой плоскости ДН формирует линейный облучатель. Облучатель обычно располагается так, чтобы его фазовый центр совпадал с фокусом сферической линзы или с фокальной осью цилиндрической линзы. Важно, чтобы возможно большая часть энергии излучения попадала на линзу, а не рассеивалась в других направлениях и чтобы у поверхности линзы, обращенной к облучателю, фронт волны был близок к сферическому или цилиндрическому. Выполнение этого условия позволяет рассматривать облучатель линзовой антенны либо как точечный, либо как линейный источник электромагнитных волн.

Рис. 2.

Поскольку линзовые антенны принципиально позволяют формировать диаграммы направленности любой формы, то возможности их применения в технике СВЧ весьма разнообразны. Так, например, линзовые антенны, формирующие узкий игольчатый луч ДН, широко применяются в качестве антенных систем радиолокационных станций (РЛС) обнаружения и сопровождения. Цилиндрические линзовые антенны, позволяющие формировать веерную ДН, могут использоваться в доплеровских измерителях скорости и сноса (ДИСС) бортовых РЛС, а также в системах картографирования местности. Линзовые антенны с облучателями в виде решетки элементарных излучателей способны формировать многолучевые ДН. Такие антенны находят применение в бортовых системах искусственных спутников Земли (ИСЗ) и обеспечивают их связь с наземными станциями, позволяя осуществлять разделение каналов связи. Возможно применение линзовых антенн в комбинации с другими типами апертурных антенн, например, с зеркальными.


3. Расчет параметров линзы.

Рисунки антенны:

Рис.3

Рис. 4 Рис. 5

Геометрические параметры линзы, прежде всего, определяются заданной диаграммой направленности антенны и распределением поля в раскрыве антенны.

Зададим уровень распределения поля в раскрыве:

Для выбранного закона:

Найдем геометрические параметры линзы:

 

Для обеспечения найденных размеров осуществим вырезку из гиперболоида вращения, радиус которого можно рассчитать по теореме Пифагора:

В качестве диэлектрика выберем полистирол:

n=1.6

Зададим фокусное расстояние:

f=2R=0.403 (м)

Найдем толщину линзы:

Из рис.4 геометрическим путем найдем апертурный угол:

 

 


4. Расчёт облучателя

Так как размеры линзы в различных плоскостях разные, то целесообразно будет выбрать в качестве облучателя остроконечный пирамидальный рупор с диаграммой направленности, обеспечивающей заданное распределение поля в раскрыве линзы.

Рис.6

Поле в раскрыве антенны:

Подставив в данные выражения ранее найденные значения φ0 ,найдем геометрические параметры рупора:

Построим реальное распределение поля в раскрыве и сравним с выбранным.

Как видно из графика распределения заметно отличаются, поэтому произведём коррекцию геометрических параметров рупора:

Как видно из графиков после корректировки распределение поля стало ближе к выбранному в начале.

Рассчитаем длину и угол раскрыва рупора, исходя из выражений для оптимального рупора:

Рассчитаем углы раскрыва рупора в различных плоскостях, используя найденную длину рупора. Возьмём большую длину рупора для обеспечения лучшей технологичности изделия и совмещения вершины рупора с фокусом линзы.

 


5. Расчет диаграммы направленности антенны

Диаграмма направленности антенны находится как произведение множителя площадки (раскрыва) на диаграмму направленности элементарного излучателя (элемента Гюйгенса).

Уровень на краю раскрыва Δ=0.1

Из графика следует, что ширина ДН по уровню 0.5 мощности равна 50 , что в точности соответствует заданной.

Ширина ДН в горизонтальной плоскости равна 40 . Это соответствует величине, обозначенной в задании.


6. Конструкция антенны

Антенна представляет собой соединение диэлектрической линзы (1) и рупорного облучателя (2), запитываемого прямоугольным волноводом(3). Также конструктивно сюда входит устройство крепления(4) и оправа линзы(5). Линза представляет собой вырезку из гиперболоида вращения, изготовленную из полистирола. Облучатель – пирамидальный остроконечный рупор, вершина которого лежит в фокусе линзы. Волновод выбирается исходя из передаваемой мощности, диапазона частот, типа волны и т.д. На основании всего этого можно выбрать прямоугольный волновод R140

Его основные параметры:

-размер 17.83×9.33 мм;

-толщина стенок 1.015 мм;

-диапазон частот 11.9-18.0 ГГц (1.6-2.5 cм);

-затухание 14.2 дБ/м;

Именно эти параметры во многом будут определяющими для всей конструкции антенны. Так, например, диапазон частот будет целиком зависеть от волноводного тракта, так как это место является самым узкополосным во всей антенне.

Общая длинна антенны: 47.2 см

Площадь линзы: 766.08 см2

Площадь раскрыва рупора: 21 см2

Мощность в антенне: 2 кВт

Длина волны: 2 см

7. Заключение

Линзовые антенны, несмотря на ряд ценных качеств (возможность получения высокой направленности излучения при малом уровне побочных лепестков), пока находят ограниченное применение, в первую очередь связанное с высокой стоимостью данных антенн. Линзовая антенна, рассчитанная в данной курсовой работе, может быть значительно модернизирована за счет зонирования. Однако, при этом, рабочая полоса частот резко сужается, а на линзе появляются так называемые “вредные” зоны.

Линзовая антенна, рассчитанная в данной работе, обладает достаточно хорошими характеристиками. Однако применение замедляющих линз более оправдано, когда требуется получить игольчатую диаграмму направленности шириной в несколько угловых минут, так как большинство других типов антенн с такой задачей справиться не в состоянии. При этом необходимо учитывать резко возрастающие размеры и массу линзы, а также сложность её изготовления.

При сравнительно широкой диаграмме направленности, как в этой работе, целесообразность применения линзовых антенн будет определяться сравнительным соотношением  характеристик антенны и затрат на её изготовление. Но следует учитывать, что при решении специальных задач, связанных с обеспечением игольчатой диаграммы направленности при малом уровне боковых лепестков, диэлектрическая линзовая антенна становится одной из самых востребованных.

8. Список литературы

1. Устройства СВЧ и антенны. Методические указания к курсовому проектированию. Сост.: В.И. Елумеев, А.Д. Касаткин, В.Я. Рендакова. Рязань, 1998. №2693

2. А.Л. Драбкин, В.Л. Зузенко, А.Г. Кислов. Антенно-фидерные устройства. -М.: Советское радио, 1974.


EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

a1

b1


 

А также другие работы, которые могут Вас заинтересовать

83403. Английский язык: Методические указания по составлению заявки на грант 592.5 KB
  Другие организации занимающиеся деятельностью сходной с Вашим проектом часто также могут предоставить подробную информацию об источниках финансирования в интересующей Вас области а лучший способ получить подробную информацию о конкретном фонде запросить из этого фонда ежегодный отчет и другие материалы...
83404. Грамматика испанского языка: Практический курс 3.03 MB
  С момента третьего издания этой книги прошло почти десять лет. Однако цели и назначение учебника остались прежними. Книга предназначена для студентов отделений испанского языка различных университетов, специализированных гимназий, лицеев и может быть использована лицами...
83405. Теория игр. Расчётно-графическая работа 999.59 KB
  В данном разделе будет представлены методы нахождения минимакса максимина седловой точки решения игры оптимальных стратегий доминирующих стратегий графическое решение игр изоморфное и аффинное преобразования матрицы. Кроме того важно отметить не только то как решаются игры но и то что показывает...
83406. Применение статистических методов для анализа и обоснования закономерностей в эмпирических данных 609 KB
  Цель и задачи работы закрепить теоретические знания вероятностного и статистического анализа системы случайных величин направленного на выявление и описание существующих между ними зависимостей; реализовать методики создания основных видов статистических моделей вероятностных экспериментов...
83407. Современные образовательные технологии в профессиональном образовании 76.5 KB
  Личностная направленность образования сегодня является одной из основных тенденций развития профессионального образования, а на первый план образования выступает задача реализации принципа активности в обучении: создание условий для выявления и развития способностей студентов...
83408. Нетрадиционные операции банков 44.92 KB
  Целью данной работы является подробное изучение таких нетрадиционных операций коммерческого банка как лизинг факторинг и трастовые операции. В настоящее время некоторые кредитные операции проводимые российскими коммерческими банками можно отнести к косвенному нетрадиционному кредитованию...
83409. Понятие государственной налоговой службы, ее задачи и компетенция 76.5 KB
  Производить в органах в органах государственной власти и органах местного самоуправления, организациях, у граждан Российской Федерации, иностранных граждан и лиц без гражданства (далее – органы, организации и граждане) проверки документов, связанных с исчислением и уплатой обязательных платежей...
83410. Методы определения относительного возраста четвертичных отложений 763.84 KB
  Эта группа методов основана на характерной для четвертичного периода климатической ритмичности с чередованием теплых и холодных эпох. Это отражается в литологии отложений, составе заключенных в них остатков фауны и флоры, а также других особенностях.
83411. Карельские пословицы поговорки загадки. Портрет жанра. Воспитательские возможности 107 KB
  Пословицы и поговорки являются отражением мудрости многих поколений, не утратившие веками своей актуальности. Многие годы эти изречения являлись сводом законов нравственности и норм поведения, оказывали непосредственное влияние на формирование духовности нации.