49114

Диэлектрическая линзовая антенна

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Краткие теоретические сведения Расчет параметров линзы Расчёт облучателя Расчет диаграммы направленности антенны Конструкция антенны Заключение Список используемой литературы Задание Краткие теоретические сведения Линзовая антенна состоит из электромагнитной линзы и облучателя. Назначение линзы трансформировать фронт волны создаваемый облучателем в плоский и сформировать требуемую диаграмму направленности ДН. Принцип работы линзовых антенн основан на...

Русский

2013-12-21

590 KB

39 чел.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра РУС

КУРСОВАЯ РАБОТА

по дисциплине: «Распространение радиоволн и антенно-фидерные устройства»

на тему: «Диэлектрическая линзовая антенна»

Выполнил:

ст. гр. № 718

Мацнев И.О.

Проверил:

доц. Елумеев В.И.

Рязань, 2010


Содержание

[1]
Содержание

[2]
Задание

[3]
Краткие теоретические сведения

[4]
Расчет параметров линзы

[5]
Расчёт облучателя

[6]
Расчет диаграммы направленности антенны

[7]
Конструкция антенны

[8]
Заключение

[9]
Список используемой литературы

  1.  
    Задание

  1.  
    Краткие теоретические сведения

Линзовая антенна состоит из электромагнитной линзы и облучателя. Линза представляет собой радиопрозрачное тело, имеющее коэффициент преломления, отличный от единицы. Назначение линзы трансформировать фронт волны, создаваемый облучателем, в плоский и сформировать требуемую диаграмму направленности (ДН). Принципиально линзовые антенны можно использовать для формирования самых различных диаграмм направленности.

Принцип работы линзовых антенн основан на разности скоростей фазового фронта электромагнитной волны в свободном пространстве и непосредственно в теле линзы. Фазовая скорость распространения волны в линзе  может быть больше или меньше скорости света с. В соответствии с этим, линзы подразделяются на ускоряющие и замедляющие.

Линза, в которой выполняется условие , называется ускоряющей. Она может быть выполнена в виде набора металлических пластин, отстоящих друг от друга на расстоянии  и параллельных вектору  создаваемой облучателем электромагнитной волны (рис. 1 a, б).

Если при этом расстояние между металлическими пластинами  выбрать исходя из условия: ,  где  - длина волны излучения, то фазовая скорость распространяющейся между пластинами волны, также как и для волновода, будет определяться выражением: , откуда видно, что . Коэффициент преломления n таких линз лежит обычно в пределах: . Рассмотренная ускоряющая линза называется металлопластинчатой.

В ускоряющих линзах (рис. 1) выравнивание фазового фронта волны происходит за счет того, что участки волновой поверхности часть своего пути проходят в линзе с повышенной фазовой скоростью. Эти участки пути различны для разных лучей. Чем сильнее луч отклонен от оси линзы, тем больший участок пути он проходит с повышенной фазовой скоростью внутри линзы. Таким образом, профиль ускоряющей линзы должен быть вогнутым по отношению к фронту падающей волны. Выходной раскрыв линзы, как правило, делается плоским.

Линза, в которой выполняется условие , называется замедляющей. Такие линзы выполняются из различных искусственных диэлектрических материалов. Как известно, фазовая скорость электромагнитной волны в диэлектрике определяется выражением , где  - относительная диэлектрическая проницаемость диэлектрика;  - его относительная магнитная проницаемость. Коэффициент преломления  таких линз обычно находится в пределах: . Замедляющая линза (рис. 2) имеет выпуклый профиль по отношению к фронту падающей волны.

Рис. 1.

В этом случае центральный луч, проходя больший путь в линзе по сравнению с крайними лучами, задерживается в линзе. В результате на плоский выходной раскрыв линзы все лучи придут в одной фазе.

В зависимости от требуемой формы диаграммы направленности выходной излучающий раскрыв линзы может быть круглой или прямоугольной формы, а сама линза в этом случае будет либо сферическая (рис. 1 а; рис. 2 а), либо цилиндрическая (рис. 1 б; рис. 2, б). Сферическая линзовая антенна с круглым выходным раскрывом используется для формирования очень узкой (игольчатой) ДН с одинаковой шириной луча в главных плоскостях. В качестве облучателей сферических линзовых антенн могут использоваться различные виды однонаправленных излучателей: различные рупоры, открытые концы волноводов, вибраторы с пассивным рефлектором и т.п. Если требуется сформировать веерообразную ДН с разной шириной луча в главных плоскостях, то используют цилиндрическую линзовую антенну, имеющую прямоугольный выходной раскрыв. В этом случае облучатель может быть выполнен в виде линейной системы элементарных синфазных излучателей (щелей, вибраторов), питаемых прямоугольным волноводом. При этом цилиндрическая линза формирует ДН только в одной плоскости, в другой плоскости ДН формирует линейный облучатель. Облучатель обычно располагается так, чтобы его фазовый центр совпадал с фокусом сферической линзы или с фокальной осью цилиндрической линзы. Важно, чтобы возможно большая часть энергии излучения попадала на линзу, а не рассеивалась в других направлениях и чтобы у поверхности линзы, обращенной к облучателю, фронт волны был близок к сферическому или цилиндрическому. Выполнение этого условия позволяет рассматривать облучатель линзовой антенны либо как точечный, либо как линейный источник электромагнитных волн.

Рис. 2.

Поскольку линзовые антенны принципиально позволяют формировать диаграммы направленности любой формы, то возможности их применения в технике СВЧ весьма разнообразны. Так, например, линзовые антенны, формирующие узкий игольчатый луч ДН, широко применяются в качестве антенных систем радиолокационных станций (РЛС) обнаружения и сопровождения. Цилиндрические линзовые антенны, позволяющие формировать веерную ДН, могут использоваться в доплеровских измерителях скорости и сноса (ДИСС) бортовых РЛС, а также в системах картографирования местности. Линзовые антенны с облучателями в виде решетки элементарных излучателей способны формировать многолучевые ДН. Такие антенны находят применение в бортовых системах искусственных спутников Земли (ИСЗ) и обеспечивают их связь с наземными станциями, позволяя осуществлять разделение каналов связи. Возможно применение линзовых антенн в комбинации с другими типами апертурных антенн, например, с зеркальными.

  1.  
    Расчет параметров линзы

Рис. 3

Рис. 4 Рис. 5

Геометрические параметры линзы, прежде всего, определяются заданной диаграммой направленности антенны и распределением поля в раскрыве антенны.

Зададим уровень распределения поля в раскрыве:

Для выбранного закона:

Найдем геометрические параметры линзы:

В качестве диэлектрика выберем полистирол:

Зададим фокусное расстояние:

Найдем толщину линзы:

Из рис. 4 геометрическим путем найдем апертурный угол:

Уточним законы распределения поля вдоль поверхности линзы и построим их с обозначением уровня поля на краю раскрыва:

Построим закон распределения поля в зависимости от угла:

  1.  
    Расчёт облучателя

Так как размеры линзы в различных плоскостях одинаковы, то целесообразно будет выбрать в качестве облучателя остроконечный пирамидальный рупор с диаграммой направленности, обеспечивающей заданное распределение поля в раскрыве линзы.

Рис.6

Поле в раскрыве антенны:

Подставив в данные выражения ранее найденные значения φ0 ,найдем геометрические параметры рупора:

 


Построим реальное распределение поля в раскрыве и сравним с выбранным.


Как видно из графика распределения заметно отличаются, поэтому произведём коррекцию геометрических параметров рупора:

Как видно из графиков после корректировки распределение поля стало ближе к выбранному в начале.

Рассчитаем длину и угол раскрыва рупора, исходя из выражений для оптимального рупора:

Рассчитаем углы раскрыва рупора в различных плоскостях, используя найденную длину рупора. Возьмём большую длину рупора для обеспечения лучшей технологичности изделия и совмещения вершины рупора с фокусом линзы.

  1.  
    Расчет диаграммы направленности антенны

Диаграмма направленности антенны находится как произведение множителя площадки (раскрыва) на диаграмму направленности элементарного излучателя.

Уровень на краю раскрыва:

ДН элементарной площадки (элемент Гюйгенса):

Множитель ДН:

Диаграмма направленности в вертикальной плоскости:

Из графика следует, что ширина ДН в вертикальной плоскости и горизонтальной плоскости по уровню 0.5 мощности равна 6.92, так как по заданию ширина ДН в вертикальной плоскости и горизонтальной плоскости одинаковы.

  1.  
    Конструкция антенны

Антенна представляет собой соединение диэлектрической линзы (1) и рупорного облучателя (2), запитываемого прямоугольным волноводом (3). Также конструктивно сюда входит устройство крепления (4) и оправа линзы (5). Линза представляет собой вырезку из гиперболоида вращения, изготовленную из полистирола. Облучатель – пирамидальный остроконечный рупор, вершина которого лежит в фокусе линзы. Волновод выбирается исходя из передаваемой мощности, диапазона частот, типа волны и т.д. На основании всего этого можно выбрать прямоугольный волновод R140.

Его основные параметры:

  •  размер 17.83×9.33 мм;
  •  толщина стенок 1.015 мм;
  •  диапазон частот 11.9-18.0 ГГц (1.6-2.5 cм);
  •  затухание 14.2 дБ/м;
  •  допустимая мощность 16 кВт.

Именно эти параметры во многом будут определяющими для всей конструкции антенны. Так, например, диапазон частот будет целиком зависеть от волноводного тракта, так как это место является самым узкополосным во всей антенне.

Общая длинна антенны: 23 см

Площадь линзы: 279.83 см2

Площадь раскрыва рупора: 12.08 см2

Мощность в антенне: 2 кВт

Длина волны: 2 см



Заключение

Линзовые антенны, несмотря на ряд ценных качеств (возможность получения высокой направленности излучения при малом уровне побочных лепестков), пока находят ограниченное применение, в первую очередь связанное с высокой стоимостью данных антенн. Линзовая антенна, рассчитанная в данной курсовой работе, может быть значительно модернизирована за счет зонирования. Однако, при этом, рабочая полоса частот резко сужается, а на линзе появляются так называемые “вредные” зоны.

Линзовая антенна, рассчитанная в данной работе, обладает достаточно хорошими характеристиками. Однако применение замедляющих линз более оправдано, когда требуется получить игольчатую диаграмму направленности шириной в несколько угловых минут, так как большинство других типов антенн с такой задачей справиться не в состоянии. При этом необходимо учитывать резко возрастающие размеры и массу линзы, а также сложность её изготовления.

При сравнительно широкой диаграмме направленности, как в этой работе, целесообразность применения линзовых антенн будет определяться сравнительным соотношением  характеристик антенны и затрат на её изготовление. Но следует учитывать, что при решении специальных задач, связанных с обеспечением игольчатой диаграммы направленности при малом уровне боковых лепестков, диэлектрическая линзовая антенна становится одной из самых востребованных.


Список используемой литературы

  1.  Устройства СВЧ и антенны. Методические указания к курсовому проектированию. Сост.: В.И. Елумеев, А.Д. Касаткин, В.Я. Рендакова. Р., 1998. № 2693
  2.  А.Л. Драбкин, В.Л. Зузенко, А.Г. Кислов. Антенно-фидерные устройства. М.: Советское радио, 1974.
  3.  М.С. Жук, Ю.Б. Молочков. Проектирование антенно-фидерных фидерных устройств. М.: Энергия, 1973


b1

a1

  1.  

 

А также другие работы, которые могут Вас заинтересовать

27929. Подготовка новых АКБ 81.5 KB
  4Лизинговые системы и методы расчета по ним В лизинговые платежи включаются: амортизация лизингового имущества за весь срок действия договора лизинга компенсация платы лизингодателя за использованные им заемные средства комиссионное вознаграждение плата за дополнительные услуги лизингодателя предусмотренные договором лизинга а также стоимость выкупаемого имущества если договором предусмотрены выкуп и порядок выплат указанной стоимости в виде долей в составе лизинговых платежей. При согласовании метода начисления лизингового платежа...
27930. Надёжность, как одно из основных свойств, составляющих качество. Определение показателя качества. Св-ва и показатели надёжности 85 KB
  4 Показатели использования ОПФ АТП Показатель фондоотдачи рассчитывается в натуральных и стоимостных единицах измерения. Величина показателя ФО показывает объем транспортной работы или сумму доходов получаемую предприятием с одного рубля стоимости ОПФ.; Sсред – среднегодовая стоимость ОПФ руб. Показатель фондоемкости показывает стоимость ОПФ необходимую предприятию для получения 1го рубля дохода.
27931. Коэффициенты корректирования и кратности. Их назначение 49.5 KB
  4Системы вознаграждения работников АТП Ни одно АТП не может обеспечить достаточно высокий уровень профессиональной надежности работников если оно не выплачивает денежное вознаграждение по конкурентоспособным ставкам и не имеет шкалы оплаты стимулирующей высокую эффективность труда. В ходе мотивации особое внимание уделяется организации заработной платы денежного вознаграждения выплачиваемого предприятием работнику. Система вознаграждения отдельного работника в значительной степени влияет на его поведение поскольку это своего рода...
27932. Расчёт потребности АТП в смазочном масле 42.5 KB
  По содержанию перспективное планирование предприятия в новых условиях обычно включает долгосрочный прогноз на 515 лет обоснованное вероятностное предположение об изменениях в структуре и запросах рынка технике и технологии производства и их социальноэкономических последствиях план развития на 35 лет с разбивкой по годам и целевые программы решения важнейших проблем. Оперативное планирование заключается в разработке на основе годовых планов конкретных производственных заданий на короткие промежутки времени как для предприятия в...
27933. Технология очистки воды после мойки а/м для повторного использования 115.5 KB
  Размер запасов в основном определяется объемом производства транспортных услуг и временем между двумя поставками материальных ресурсов. Важность этой задачи в определенной степени обусловливается тем что сверхнормативные запасы материальных ресурсов вызывают финансовые затруднения снижают качество хранения материалов требуют дополнительных складских помещений. Образование значительных запасов сопряжено не только с появлением дополнительных складских расходов но и с риском устаревания материальных ресурсов а также с упущенной выгодой...
27934. Поточный метод. Дефектовка и ремонт пары «клапан-седло» газораспределительного механизма 42.5 KB
  2При расчетном числе рабочих постов ТО1 Д1 = 3 для одиночных а м 2 автопоездов ТО2 Д2 = 4 для одиночных 3 автопоездов 3Расчетное число линий обслуживания – целое число или меньше целого числа с отклонением не более 008 на 1 линию: 0 mцел – mрасч mцел= 008 При соблюдении всех этих условий для зон ТО экономически целесообразно является применение поточное производство с применением конвейера или других механизмов для принудительного перемещения автомобилей. Число поточных линий: m = такт ритм ритм = 60 ТсмС Nicфи фи – коэфт...