49114

Диэлектрическая линзовая антенна

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Краткие теоретические сведения Расчет параметров линзы Расчёт облучателя Расчет диаграммы направленности антенны Конструкция антенны Заключение Список используемой литературы Задание Краткие теоретические сведения Линзовая антенна состоит из электромагнитной линзы и облучателя. Назначение линзы трансформировать фронт волны создаваемый облучателем в плоский и сформировать требуемую диаграмму направленности ДН. Принцип работы линзовых антенн основан на...

Русский

2013-12-21

590 KB

41 чел.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра РУС

КУРСОВАЯ РАБОТА

по дисциплине: «Распространение радиоволн и антенно-фидерные устройства»

на тему: «Диэлектрическая линзовая антенна»

Выполнил:

ст. гр. № 718

Мацнев И.О.

Проверил:

доц. Елумеев В.И.

Рязань, 2010


Содержание

[1]
Содержание

[2]
Задание

[3]
Краткие теоретические сведения

[4]
Расчет параметров линзы

[5]
Расчёт облучателя

[6]
Расчет диаграммы направленности антенны

[7]
Конструкция антенны

[8]
Заключение

[9]
Список используемой литературы

  1.  
    Задание

  1.  
    Краткие теоретические сведения

Линзовая антенна состоит из электромагнитной линзы и облучателя. Линза представляет собой радиопрозрачное тело, имеющее коэффициент преломления, отличный от единицы. Назначение линзы трансформировать фронт волны, создаваемый облучателем, в плоский и сформировать требуемую диаграмму направленности (ДН). Принципиально линзовые антенны можно использовать для формирования самых различных диаграмм направленности.

Принцип работы линзовых антенн основан на разности скоростей фазового фронта электромагнитной волны в свободном пространстве и непосредственно в теле линзы. Фазовая скорость распространения волны в линзе  может быть больше или меньше скорости света с. В соответствии с этим, линзы подразделяются на ускоряющие и замедляющие.

Линза, в которой выполняется условие , называется ускоряющей. Она может быть выполнена в виде набора металлических пластин, отстоящих друг от друга на расстоянии  и параллельных вектору  создаваемой облучателем электромагнитной волны (рис. 1 a, б).

Если при этом расстояние между металлическими пластинами  выбрать исходя из условия: ,  где  - длина волны излучения, то фазовая скорость распространяющейся между пластинами волны, также как и для волновода, будет определяться выражением: , откуда видно, что . Коэффициент преломления n таких линз лежит обычно в пределах: . Рассмотренная ускоряющая линза называется металлопластинчатой.

В ускоряющих линзах (рис. 1) выравнивание фазового фронта волны происходит за счет того, что участки волновой поверхности часть своего пути проходят в линзе с повышенной фазовой скоростью. Эти участки пути различны для разных лучей. Чем сильнее луч отклонен от оси линзы, тем больший участок пути он проходит с повышенной фазовой скоростью внутри линзы. Таким образом, профиль ускоряющей линзы должен быть вогнутым по отношению к фронту падающей волны. Выходной раскрыв линзы, как правило, делается плоским.

Линза, в которой выполняется условие , называется замедляющей. Такие линзы выполняются из различных искусственных диэлектрических материалов. Как известно, фазовая скорость электромагнитной волны в диэлектрике определяется выражением , где  - относительная диэлектрическая проницаемость диэлектрика;  - его относительная магнитная проницаемость. Коэффициент преломления  таких линз обычно находится в пределах: . Замедляющая линза (рис. 2) имеет выпуклый профиль по отношению к фронту падающей волны.

Рис. 1.

В этом случае центральный луч, проходя больший путь в линзе по сравнению с крайними лучами, задерживается в линзе. В результате на плоский выходной раскрыв линзы все лучи придут в одной фазе.

В зависимости от требуемой формы диаграммы направленности выходной излучающий раскрыв линзы может быть круглой или прямоугольной формы, а сама линза в этом случае будет либо сферическая (рис. 1 а; рис. 2 а), либо цилиндрическая (рис. 1 б; рис. 2, б). Сферическая линзовая антенна с круглым выходным раскрывом используется для формирования очень узкой (игольчатой) ДН с одинаковой шириной луча в главных плоскостях. В качестве облучателей сферических линзовых антенн могут использоваться различные виды однонаправленных излучателей: различные рупоры, открытые концы волноводов, вибраторы с пассивным рефлектором и т.п. Если требуется сформировать веерообразную ДН с разной шириной луча в главных плоскостях, то используют цилиндрическую линзовую антенну, имеющую прямоугольный выходной раскрыв. В этом случае облучатель может быть выполнен в виде линейной системы элементарных синфазных излучателей (щелей, вибраторов), питаемых прямоугольным волноводом. При этом цилиндрическая линза формирует ДН только в одной плоскости, в другой плоскости ДН формирует линейный облучатель. Облучатель обычно располагается так, чтобы его фазовый центр совпадал с фокусом сферической линзы или с фокальной осью цилиндрической линзы. Важно, чтобы возможно большая часть энергии излучения попадала на линзу, а не рассеивалась в других направлениях и чтобы у поверхности линзы, обращенной к облучателю, фронт волны был близок к сферическому или цилиндрическому. Выполнение этого условия позволяет рассматривать облучатель линзовой антенны либо как точечный, либо как линейный источник электромагнитных волн.

Рис. 2.

Поскольку линзовые антенны принципиально позволяют формировать диаграммы направленности любой формы, то возможности их применения в технике СВЧ весьма разнообразны. Так, например, линзовые антенны, формирующие узкий игольчатый луч ДН, широко применяются в качестве антенных систем радиолокационных станций (РЛС) обнаружения и сопровождения. Цилиндрические линзовые антенны, позволяющие формировать веерную ДН, могут использоваться в доплеровских измерителях скорости и сноса (ДИСС) бортовых РЛС, а также в системах картографирования местности. Линзовые антенны с облучателями в виде решетки элементарных излучателей способны формировать многолучевые ДН. Такие антенны находят применение в бортовых системах искусственных спутников Земли (ИСЗ) и обеспечивают их связь с наземными станциями, позволяя осуществлять разделение каналов связи. Возможно применение линзовых антенн в комбинации с другими типами апертурных антенн, например, с зеркальными.

  1.  
    Расчет параметров линзы

Рис. 3

Рис. 4 Рис. 5

Геометрические параметры линзы, прежде всего, определяются заданной диаграммой направленности антенны и распределением поля в раскрыве антенны.

Зададим уровень распределения поля в раскрыве:

Для выбранного закона:

Найдем геометрические параметры линзы:

В качестве диэлектрика выберем полистирол:

Зададим фокусное расстояние:

Найдем толщину линзы:

Из рис. 4 геометрическим путем найдем апертурный угол:

Уточним законы распределения поля вдоль поверхности линзы и построим их с обозначением уровня поля на краю раскрыва:

Построим закон распределения поля в зависимости от угла:

  1.  
    Расчёт облучателя

Так как размеры линзы в различных плоскостях одинаковы, то целесообразно будет выбрать в качестве облучателя остроконечный пирамидальный рупор с диаграммой направленности, обеспечивающей заданное распределение поля в раскрыве линзы.

Рис.6

Поле в раскрыве антенны:

Подставив в данные выражения ранее найденные значения φ0 ,найдем геометрические параметры рупора:

 


Построим реальное распределение поля в раскрыве и сравним с выбранным.


Как видно из графика распределения заметно отличаются, поэтому произведём коррекцию геометрических параметров рупора:

Как видно из графиков после корректировки распределение поля стало ближе к выбранному в начале.

Рассчитаем длину и угол раскрыва рупора, исходя из выражений для оптимального рупора:

Рассчитаем углы раскрыва рупора в различных плоскостях, используя найденную длину рупора. Возьмём большую длину рупора для обеспечения лучшей технологичности изделия и совмещения вершины рупора с фокусом линзы.

  1.  
    Расчет диаграммы направленности антенны

Диаграмма направленности антенны находится как произведение множителя площадки (раскрыва) на диаграмму направленности элементарного излучателя.

Уровень на краю раскрыва:

ДН элементарной площадки (элемент Гюйгенса):

Множитель ДН:

Диаграмма направленности в вертикальной плоскости:

Из графика следует, что ширина ДН в вертикальной плоскости и горизонтальной плоскости по уровню 0.5 мощности равна 6.92, так как по заданию ширина ДН в вертикальной плоскости и горизонтальной плоскости одинаковы.

  1.  
    Конструкция антенны

Антенна представляет собой соединение диэлектрической линзы (1) и рупорного облучателя (2), запитываемого прямоугольным волноводом (3). Также конструктивно сюда входит устройство крепления (4) и оправа линзы (5). Линза представляет собой вырезку из гиперболоида вращения, изготовленную из полистирола. Облучатель – пирамидальный остроконечный рупор, вершина которого лежит в фокусе линзы. Волновод выбирается исходя из передаваемой мощности, диапазона частот, типа волны и т.д. На основании всего этого можно выбрать прямоугольный волновод R140.

Его основные параметры:

  •  размер 17.83×9.33 мм;
  •  толщина стенок 1.015 мм;
  •  диапазон частот 11.9-18.0 ГГц (1.6-2.5 cм);
  •  затухание 14.2 дБ/м;
  •  допустимая мощность 16 кВт.

Именно эти параметры во многом будут определяющими для всей конструкции антенны. Так, например, диапазон частот будет целиком зависеть от волноводного тракта, так как это место является самым узкополосным во всей антенне.

Общая длинна антенны: 23 см

Площадь линзы: 279.83 см2

Площадь раскрыва рупора: 12.08 см2

Мощность в антенне: 2 кВт

Длина волны: 2 см



Заключение

Линзовые антенны, несмотря на ряд ценных качеств (возможность получения высокой направленности излучения при малом уровне побочных лепестков), пока находят ограниченное применение, в первую очередь связанное с высокой стоимостью данных антенн. Линзовая антенна, рассчитанная в данной курсовой работе, может быть значительно модернизирована за счет зонирования. Однако, при этом, рабочая полоса частот резко сужается, а на линзе появляются так называемые “вредные” зоны.

Линзовая антенна, рассчитанная в данной работе, обладает достаточно хорошими характеристиками. Однако применение замедляющих линз более оправдано, когда требуется получить игольчатую диаграмму направленности шириной в несколько угловых минут, так как большинство других типов антенн с такой задачей справиться не в состоянии. При этом необходимо учитывать резко возрастающие размеры и массу линзы, а также сложность её изготовления.

При сравнительно широкой диаграмме направленности, как в этой работе, целесообразность применения линзовых антенн будет определяться сравнительным соотношением  характеристик антенны и затрат на её изготовление. Но следует учитывать, что при решении специальных задач, связанных с обеспечением игольчатой диаграммы направленности при малом уровне боковых лепестков, диэлектрическая линзовая антенна становится одной из самых востребованных.


Список используемой литературы

  1.  Устройства СВЧ и антенны. Методические указания к курсовому проектированию. Сост.: В.И. Елумеев, А.Д. Касаткин, В.Я. Рендакова. Р., 1998. № 2693
  2.  А.Л. Драбкин, В.Л. Зузенко, А.Г. Кислов. Антенно-фидерные устройства. М.: Советское радио, 1974.
  3.  М.С. Жук, Ю.Б. Молочков. Проектирование антенно-фидерных фидерных устройств. М.: Энергия, 1973


b1

a1

  1.  

 

А также другие работы, которые могут Вас заинтересовать

27843. Поперечная дифференциальная токовая защита 88 KB
  Для осуществления защиты используются ТТ с одинаковыми коэффициентами трансформации, установленные со стороны общих шин в одноименных фазах. Реле тока КА включается на разность токов двух одноименных фаз сдвоенной линии по схеме с циркулирующими токами.
27844. Схема и расчет максимальной токовой защиты с блокировкой минимального напряжения 91.5 KB
  Схема и расчет максимальной токовой защиты с блокировкой минимального напряжения Максимальная токовая защита с блокировкой минимального напряжения остаточное максимальное напряжение в месте установки защиты при КЗ в конце либо основной либо резервной зоны К1 К2 при 3 фазных максимальных КЗ. В этих случаях применяется блокировка...
27845. Поперечная дифференциальная токовая направленная защита (принцип действия, схема и особенности работы) 154 KB
  Поперечная дифференциальная токовая направленная защита ДТНЗ Комплект Q1 – Q3 ставиться такой же и на Q2 – Q4 Icp Iнбмахрасч Icp =Котс ∙ Iнбмахрасч При К1: Ip Icp Lк – зона каскадного действия ≤25 L Uост3 = Up Ucpmin – мертвая зона вблизи установки комплекта защиты Lмз ≤ 10 L по напряжению для реле направления мощности к контактам реле КА1 Это для схемы с опережением. Дополнительные контакты служат для разгрузки контактов реле. Реле направления мощности включается по 90 схеме. В качестве реле направления мощности...
27846. Схема соединения трансформаторов тока и обмоток реле в полную звезду. Особенности работы релейной зашиты по этой схеме 141.5 KB
  При двойных замыканиях на землю в сетях с малыми токами замыкания на землю если точки расположены на разных линиях могут подействовать на отключение обеих линий при равенстве выдержек времени что не желательно. Iр = Iф При двойных замыканиях на землю в сетях с изолированной нейтралью tсз1 = tcз2 При 1фазном замыкании на землю в 2 3 случаях схема полной звезды в сети с изолированной нейтралью работают неправильно неселективно. при отсутствии повреждения на землю в нулевом проводе течет Iнб но неисправность 0го провода или его...
27847. Двухфазная двухрелейная и трехрелейная схемы соединения трансформаторов тока 70.5 KB
  Особенности: реагирует на все виды КЗ за исключением замыкания на землю фазы В. ток в обратном проводе проходит не только при замыкании на землю но и при межфазном КЗ а также при нормальной работе. в сетях с малыми токами при замыкании на землю схема в 2 3 случаев работает селективно. обеспечивает селективность в 2 3 случаях при 1фазном замыкании на землю.
27848. Схемы соединения с двумя трансформаторами тока и одним реле 100.5 KB
  Схема соединения трансформаторов тока в треугольник а обмоток реле в звезду. Схема соединения с 2 ТТ и одним реле включенным на разность токов двух фаз неполный треугольник. Ксх = Ip = Ia Ic Особенности схемы: схема применяется для защиты от междуфазных повреждений. При КЗ между АС Кч = Кч по схемам полной и неполной звезды Кч = Схема соединения ТТ в Δ а обмоток реле в Y схема полного треугольника.
27849. Виды повреждений и ненормальных режимов трансформаторов. Газовая защита трансформаторов 209.5 KB
  При КЗ однофазном на землю – одно два выключения Т№ из работы - Т.К. ток короткого замыкания большой. Также трансформатор Т2 – не отключается - т.к. нейтраль разземлена (опасное повышение напряжения). После выключения выключателей через т. КЗ – емкостной ток, перемежающая электрическая дуга и как следствие – перенапряжение. Может также возникнуть при односторонне запитанной линии с большей емкостью провода (напряжение более 500 кВ). Применяется максимальная защита напряжения.
27850. Требования к устройствам АВР и расчет их параметров 47.5 KB
  Требования к устройствам АВР и расчет их параметров. Требования к устройствам АВР и расчёт их параметров. Причём до включения АВР линия должна быть отключена. Пуск органов АВР являются тип реле напряжения: Из уставок выбирается меньшая.
27851. Токовая защита трансформаторов от многофазных КЗ со ступенчатой характеристикой выдержки времени 137 KB
  Токовая защита трансформаторов от многофазных КЗ со ступенчатой характеристикой выдержки времени. Ставится двухступенчатая защита: т. В ряде случаев защита дополняется защитой от однофазного КЗ на стороне НН. В городских замкнутых сетях напряжением до 1 кВ для селективного отключения одного трансформатора должна предусматриваться токонаправленная защита.