49160

Программа на языке программирования Паскаль

Курсовая

Информатика, кибернетика и программирование

Проверить решение промежуточных задач средствами математических пакетов. Построить блок-схемы задачи и вспомогательных частей алгоритма. Оценить погрешность выполненных расчетов

Русский

2013-12-22

331.5 KB

1 чел.

Задание для курсовой работы.

Написать программу на языке программирования Паскаль для решения следующей задачи (вариант задания индивидуальный). Результаты расчетов должны выводиться на экран и в файл. Оформление графиков и таблиц выполнять средствами математических пакетов (Maple, MathCad). Демонстрационный вариант программы подготовить в среде визуального программирования Delphi.

Проверить решение промежуточных задач средствами математических пакетов. Построить блок-схемы задачи и вспомогательных частей алгоритма. Оценить погрешность выполненных расчетов.

Напряжение U=U(t) на входе транзистора как функция времени описывается дифференциальным уравнением

с начальными условиями (1), где n – последняя цифра номера зачетной книжки, k – коэффициент усиления (см. ниже), fs(t) – периодический сигнал

(рис. 1), mкоэффициент  обратной связи.

Указания и пояснения.

  1.  Дифференциальное уравнение с заданными начальными условиями (задача Коши) решается методом Рунге-Кутта второго порядка с коррекцией (3) на отрезке [0;5] с шагом  h=0.01.(в узлах  tj =jh, j=0,1,2…). Функция fs(t) в правой части представляет собой регулирующий периодический (период Т) сигнал единичной амплитуды (рис 1, номер варианта  n – последняя цифра номера зачетной книжки,). Результаты расчетов—таблица (tj,Uj) и график функции U(t) (на экран и в файл).
  2.  Значение коэффициента усиления k в правой части дифференциального уравнения есть наименьший положительный корень полинома (2), который вычисляется одним из методов нахождения корней уравнения (метод касательных, метод простой итерации).
  3.  Построить спектральные характеристики периодического сигнала fs(t), заданного в аналоговой форме и в виде дискретного сигнала. Длительность сигнала равна 1, период T=k.
  4.   Период функции U(t) определить с помощью функции автокорреляции.

Курсовая работа выполняется в ЧЕТЫРЕ  этапа.

  1.  Средствами математического пакета Maple  решается задача спектрального анализа аналогового и дискретного периодического сигнала fs(t). Сравниваются спектры амплитуд аналогового и дискретного представлений сигнала. (образец выполнения задания – файл вариант11.mws).
    1.  Создается проект в визуальной среде Delphi, решающий эту же задачу для дискретного сигнала, а результаты выполнения сравниваются визуально.
      1.  С помощью языка программирования системы Maple решается задача интегрирования дифференциального уравнения (задача Коши) методом (по варианту задания). Окончательные вычисления в программе зависят от результатов расчета программы в Delphi (следующий пункт). Образец выполнения задания – файл RUTTA.mws.
        1.  Создается проект в визуальной среде Delphi, решающий ту же задачу Коши, результаты расчета которой записываются в файл,  который используется в предыдущем пункте. Выводятся графики результатов вычислений в Maple и Delphi и сравниваются между собой. Явные несовпадения свидетельствуют об ошибке в программе на  Delphi.

Оформление:

  •  Формат А4.
  •  Титул
  •  Постановка задачи
  •  Алгоритмы решения вспомогательных задач
  •  Блок-схемы
  •  Результаты расчетов, графики
  •  Литература

Индивидуальное задание № 1

  1.  Начальные условия: U(0)=0.15
  2.  полином:x^6+x^3-5
  3.  коррекция:по средней точке
  4.   метод:касательных 

        

Блок-схема алгоритма  сигнала              

Часть 1

> restart;

> with(linalg):with(plots):with(plottools):

> fun:= proc(t) local z ;z:=piecewise(t<0,0,t<1/2,1,t<1,0); evalf(z);end;

> fun(t/tau);

> p(x):=x^6+x^3-5;

> Koeff:=fsolve(p(x)=0,x,0..3);

> tau:=Koeff:

> plot(p(x),x=Koeff-0.5..Koeff+0.5,thickness=2,color=black);

> R1:=plot(fun(t),t=0..2.5,thickness=2,linestyle=3,color=blue):

> R11:=plot(fun(t/tau),t=0..2.5,thickness=2,color=black):

> display(R1,R11);

> Fourier_T:=proc(F,T0,TN,k::evaln) local T;

 global A0,Ak,Bk;

   T:=TN-T0;

  A0:=2/T*Int(F(x),x=T0..TN);

  Ak:=2/T*int(F(x)*cos(k*x*2*Pi/T),x=T0..TN):

  Bk:=2/T*int(F(x)*sin(k*x*2*Pi/T),x=T0..TN):

end proc:

> Trig_polynom:=proc(N,T,a0,ak,bk,k::evaln) local n,Pol,A0,A,B;

 global a,b,RisTrig;

 a:=array(0..N);b:=array(0..N);

   A0:=evalf(a0);a[0]:=A0;b[0]:=0;

   A:=seq(evalf(subs(k=n,ak)),n=1..N);

   B:=seq(evalf(subs(k=n,bk)),n=1..N);

    for n from 1 to N do

     a[n]:=A[n];b[n]:=B[n];

    end do;

   Pol:=A0/2+sum(A[k]*cos(2*Pi*k*x/T)+B[k]*sin(2*Pi*k*x/T),k=1..N):

   RisTrig:=plot(Pol,x=-T/2..3*T/2,color=blue,thickness=2):

 RETURN(Pol);

end proc:

Процедура ARR строит спектр амплитуд линейчатой гистограммой.

> ARR:=proc(n::integer,c) local L,H,ma,mi,k::integer,

  Sim::array(0..n);

  ma:=c[0];mi:=c[0];

  L:=line([0,c[0]],[n,c[n]],thickness=2,color=red);

 for k from 1 to n do

  if c[k]>ma then ma:=c[k];end if;

  if c[k]<mi then mi:=c[k];end if;

 end do;

 H:=ma-mi;

 if H=0 then RETURN(L) end;

 for k from 0 to n do

  if abs(c[k])<H/1000 then

    Sim[k]:=ellipse([k,c[k]],0.2,0.01*H,color=blue);

  else

   Sim[k]:=plottools[arrow]([k,0],[k,c[k]],0.2,0.2,0,color=black);

  end if;

 end do;

 convert(Sim,list);

end:

> Spectr:=proc(n,a,b,c,Risphi) local k,R,phi;

  for k  from 0 to n do

    c[k]:=evalf(abs(I*a[k]+b[k])):

#    print(k,c[k]);

    phi:=evalf(argument(I*a[k]+b[k]));

    R[k]:=[eval(k),eval(phi)];

  end:;

Risphi:=plot(convert(R,list)):

end:

> T:=3;# величина периода

> F_for_all:=proc(t) global tau;fun(t/tau);end proc:;

> Ris1:=plot(F_for_all(t),t=0..T,color=brown,thickness=2,discont=true):display(Ris1);

> Fourier_T(F_for_all,0,T,k):

> a0:=evalf(A0);

> Nk:=50;

> Trig_polynom(Nk,T,A0,Ak,Bk,k):

> display(RisTrig,Ris1);

> Spectr(Nk,a,b,c,'Risphi1');

> display(ARR(Nk,c));

>

> Ampl:=display(ARR(Nk,c)):;

> 2: DTF:=proc (y,N,Y) local n,k,j,p,h;

n:=N-1;

h:=2*Pi/N;

2.1: for k from 0 to N do

p:=0;

  for j from 0 to n do

    p:=p+evalf(y[j]*exp(-I*k*j*h));

  end;

 Y[k]:=evalf(1/N*p);

end:

end:;

> 3: CDTF:=proc(N,Y,y) local n,k,h,p,j;

n:=N-1;

 h:=2*Pi/N;

for k from 0 to n do

p:=0;

  for j from 0 to n do

    p:=p+Y[j]*exp(I*k*j*h);

  end;

 y[k]:=evalf(Re(p));

end:

end:

> Setka_DTF:=proc(Nt,T,F,Y::array) local h,j,x,R,RL;  

  global GrafF;

  h:=T/Nt;

 for j from 0 to Nt do

  x:= evalf(j*h);

  Y[j]:= F(x);

  R[j]:=[j,eval(Y[j])];

 end:

   5.1: R[Nt]:=[j,eval(Y[0])];

    GrafF:=plot(convert(R,list),0..Nt-1,color=brown,

    style=point,symbol=circle):

end:

> Spectr_DTF:=proc(n,C,A,phi) local k,R;global Risphi;

 6.1:  for k  from 0 to n do

    A[k]:=evalf(abs(C[k])):

    phi[k]:=evalf(argument(C[k]));

    R[k]:=[eval(k),eval(phi[k])];

end:;

Risphi:=plot(convert(R,list),thickness=2,color=blue,style=point,symbol=box):

end:

Параметры задачи

> Nt:=19:`число дискретных отсчетов `:

> n:=Nt;N:=Nt-1;# параметры ДПФ

> C:=array(0..n):phi:=array(0..n):A:=array(0..n):;

Y:=array(0..N):

> Setka_DTF(N,T,F_for_all,Y);

> DTF(Y,Nt,C,n):

> Spectr_DTF(n,C,A,phi):

Для четных N

> display(ARR(n,A));

> display(ARR((n-1)/2,A));

> CDTF(Nt,C,F):

> display(GrafF,ARR(n-1,F));

Аргумент n-1 из-за того, что процедура ARR строит в АЧХ на одну точку больше (номера от нуля)

> Setka:=proc(Nt,T,F,Y::array) local h,j,x,R,RL;  

  global GrafF;

  h:=T/Nt;

 for j from 0 to Nt do

  x:= evalf(j*h);

  Y[j]:= F(x);

  R[j]:=[x,eval(Y[j])];

 end:

   5.1: R[Nt]:=[x,eval(Y[0])];

    GrafF:=plot(convert(R,list),0..T,color=brown,

    style=point,symbol=circle):

end:

> F_Discret:=proc (Y,N,a,b,n) local k,j,p,q,h;

 h:=2*Pi/N;

for k from 0 to n do

p:=0;q:=0;

  for j from 0 to N do

    p:=p+evalf(Y[j]*cos(k*j*h));

    q:=q+evalf(Y[j]*sin(k*j*h));

  end;

 a[k]:=2/N*p;b[k]:=2/N*q;

# print(k,a[k],b[k]);

end:

if 2*n=N then b[n]:=0; end;

RETURN(n);

end:;

> 3: Trig:=proc(t,n,T,a,b) local z,k;

z:=a[0]/2+sum(a[k]*cos(k*t*2*Pi/T)+b[k]*sin(k*t*2*Pi/T),k=1..n);

end:

> M:=Nk:

> a:=array(0..M):b:=array(0..M):c:=array(0..M);

> Setka(N,T,F_for_all,Y):

> F_Discret(Y,N,a,b,M):

> Cl:=blue,red,brown:;

> 15: RT:=seq(plot(Trig(t,5*k,T,a,b),t=-0.1..T+0.1,

numpoints=500,color=Cl[k]),k=1..3):

> 16: display(RT,GrafF);

> Spectr(M,a,b,c,'Grafphi');:

> display(ARR(M,c));:

> display(Ampl);

>

unit korenur;

interface

uses

 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

 Dialogs, StdCtrls, ExtCtrls;

type

 TForm1 = class(TForm)

   Button1: TButton;

   Label1: TLabel;

   Button2: TButton;

   Button3: TButton;

   ListBox1: TListBox;

   Button4: TButton;

   Image1: TImage;

   procedure Button1Click(Sender: TObject);

   procedure Button3Click(Sender: TObject);

   procedure Button4Click(Sender: TObject);

   procedure Button2Click(Sender: TObject);

   procedure FormCreate(Sender: TObject);

 private

   { Private declarations }

 public

   { Public declarations }

 end;

var

 Form1: TForm1;

implementation

{$R *.dfm}

const

N=50;

{m=N div 2;}

m=51;

x0=0;

T=3;

hx=T/N;

type

koeff=array[0..m] of real;

dann=array[0..N] of real;

var

Tau:real;

Y:dann;

a,b:koeff;

h:real;

eps:real;

La:real;

Rb:real;

Nkoeff:integer;

function pol(t:real):real;

begin

 pol:=sqr(sqr(t))*sqr(t)+sqr(t)*t-5;

end;

function derive(t:real):real;

begin

derive:=6*sqr(sqr(t))*t+3*sqr(t);

end;

function root(a,b:real):real;

var

x0,x1,delta:real;

begin

x0:=(a+b)/2;

repeat

 x1:=x0-pol(x0)/derive(x0);

 delta:=abs(x1-x0);

 x0:=x1;

until delta<0.00001;

root:=x0;

end;

function signal(t:real):real;

var

z:real;

begin

 if t<0 then

  z:=0

  else

  if t<1/2 then

  z:=1

  else

  if t<1 then

  z:=0;

  signal:=z;

end;

procedure Trig(m,N:Integer;Y:dann; var a,b:koeff);

var

j,k:Integer;

p,q,x,h:real;

begin

 h:=2*Pi/N;

 for k := 0 to m do

 begin

   p:=0;

   q:=0;

   for j := 0 to N do

     begin

       x:=j*h;

       p:=p+Y[j]*cos(k*x);

       q:=q+Y[j]*sin(k*x);

     end;

     a[k]:=p*2/N;

     b[k]:=q*2/N;

 end;

end;

function Tpol(m:integer;x:real):real;

var

z:real;

k:integer;

begin

 z:=a[0]/2;

  for k:=1 to m do

   z:=z+(a[k]*cos(k*2*Pi/T*x)+b[k]*sin(k*2*Pi/T*x));

  Tpol:=z;

end;

procedure grafik(numvar:integer);

type

dann=array[0..N] of real;

var

L,R,W,H,k,x0,y0,posx,posy:integer;

X,Y:dann;

ymin,ymax:real;

Mx,My:real;

Nkf:string;

tx:real;

ypol:real;

procedure min_max(N:integer;Y:dann; var min, max:real);

  var

    k: integer;

  begin

     min:=Y[0];max:=Y[0];

     for k := 1 to N do

     if Y[k]> max then

        max:=Y[k]

       else if Y[k]< min then

        min:=Y[k];

     {увеличим диапазон}

      max:=max+0.1;

      min:=min-0.1;

  end;

begin

  L:=20;

  R:=form1.image1.clientHeight-20;

  W:=form1.image1.Width-50;

  H:=form1.image1.clientheight-50;

  case numvar of

1: begin {=========== сигнал и полином =================}

     for  k:=0 to N do

       X[k]:=signal(hx*k/Tau);

     min_max(N,X,ymin,ymax);

     Mx:=W/N;

     My:=H/(ymax-ymin);

     x0:=L;

     y0:=R-abs(Round(ymin*My));

     with form1.image1.Canvas do

     begin

       pen.Color:=clblue;

       font.Name:='Tahoma';

       font.Size:=8;

       font.Color:=claqua;

       for k:=0 to N do

        begin

          posx:=x0+round(k*Mx);

          posy:=y0-round(X[k]*My);

          textout(posx-2,posy-8,'o');

          Pixels[posx,posy]:=clRed;

        end;

       pen.Width:=2;

       Moveto(L,R);lineto(L,R-H);

       moveto(x0,y0);lineto(x0+W,y0);

       font.Color:=clred;

       textout(x0+W,y0+10,'x');

       textout(x0+W,y0-20,floattostrF(T,ffFixed,3,0));

       textout(x0+round(W*Tau/T), y0-20,'tau='+ floattostrF (Tau,ffFixed, 6, 3));

       Nkf:=Inputbox('Число коэффициентов полинома','например 10','20');

       Nkoeff:=strtoint(Nkf);

       pen.Color:=clNavy;

       tx:=0;

       ypol:=Tpol(Nkoeff,tx/Tau);

        posx:=x0+round(0*Mx/2);

        posy:=y0-round(ypol*My);

       moveto(posx,posy);

       for k:=1 to 2*N do

       begin

         tx:=hx*k/2;

         ypol:=Tpol(Nkoeff,tx/Tau);

         posx:=x0+round(k*Mx/2);

         posy:=y0-round(ypol*My);

         lineto(posx,posy);

       end;

     end;

   end;

  2: begin  {АЧХ столбиками}

       for  k:=0 to m do

        Y[k]:=sqrt(sqr(a[k])+sqr(b[k]));

        min_max(m,Y,ymin,ymax);

        Mx:=W/m;

        My:=H/(ymax-ymin);

        x0:=L;

        y0:=R-abs(Round(ymin*My));

     with form1.image1.Canvas do

     begin

        pen.Width:=2;

        pen.Color:=clred;

        Moveto(L,R);lineto(L,R-H);

        moveto(x0,y0);lineto(x0+W,y0);

        pen.Width:=5;

        pen.Color:=clblue;

       for  k:=0 to m do

        begin

         posx:=x0+round(k*Mx);

         posy:=y0-round(Y[k]*My);

         moveto(posx,y0);

         lineto(posx,posy);

        end;

     end;

     end;

  end;

end;

{=====================================}

procedure TForm1.Button1Click(Sender: TObject);

Const

a=0;

b=3;

begin

Tau:=root(a,b);

Label1.Caption:='Корень равен'+ floattostr(Tau);

Button1.Visible:=false;

Button3.Visible:=true;

Button3.SetFocus;

end;

procedure TForm1.Button2Click(Sender: TObject);

begin

 Form1.Caption:='Построение графиков';

  {здесь поместим алгоритм построения графика сигнала и триг. полинома}

   Label1.Caption:='графики сигнала и полинома';

   Button3.Visible:=false;

   Button4.Visible:=true;

   listbox1.Visible:=false;

   grafik(1);

Button2.Visible:=false;

Button4.Visible:=true;

Button4.SetFocus;

end;

procedure TForm1.Button3Click(Sender: TObject);

Var

j:integer;

s1,s2,s3:string;

begin

for j := 0 to N do

 Y[j]:=signal(x0+j*hx);

 Y[N]:=(Y[0]+Y[N])/2;

 Trig(m,N,Y,a,b);

 for j := 0 to m do

 begin

   str(j:2,s1);

   str(a[j]:10:5,s2);

   str(b[j]:10:5,s3);

   listbox1.Items.Add(s1+s2+s3);

 end;

 Label1.Caption:='Вычислены коэффициенты Фурье';

 Button3.Visible:=false;

 Button2.Visible:=true;

 Button2.SetFocus;

end;

procedure TForm1.Button4Click(Sender: TObject);

begin

Form1.Caption:='Спектр амплитуд';

   {здесь поместим алгоритм построения спектра амплитуд}

   Label1.Caption:='График спектра амплитуд';

   Button4.Visible:=false;

   form1.image1.Canvas.FillRect(rect(0,0,clientwidth,clientheight));

   grafik(2)

end;

procedure TForm1.FormCreate(Sender: TObject);

begin

Button2.Visible:=false;

Button3.Visible:=false;

Button4.Visible:=false;

end;

end.

Часть 2

> restart;

> with(linalg):with(plots):

pp:=(x,y)->[x,y];

Warning, the protected names norm and trace have been redefined and unprotected

Warning, the name changecoords has been redefined

> fun:= proc(t) local z ; > z:=piecewise(t<0,0,t<1/2,1,t<1,0); evalf(z);end;

evalf(z);end;

> plot(fun(t),t=-1..2,thickness=2,color=brown):;

> p(x):=x^6+x^3-5;

> Koeff:=fsolve(p(x),x,0..2);

> T:=Koeff;

> tau:=1;

> Period:=proc(t,t0,tau,T,f) local x,z;

x:=evalf(t-t0-floor((t-t0)/T)*T);

z:=fun(x/tau);evalf(z);

end;

> plot(Period(x,0,tau,T,fun),x=-1..3,thickness=2,color=brown);

> #==============================================================================

>

> Koc:=2;Nzac:=2;

> ur:=diff(U(t),t);

> F:=Nzac*(cos((4+Nzac/10)*t+U(t))+Koeff*Period(t,0,tau,T,f)-Koc*U(t));

> RK:=dsolve({ur=F,U(0)=0.2},U(t),type=numeric,output=listprocedure);

> fU:=subs(RK,U(t));

> T0:=5;Nt:=50;h:=T0/Nt;

> Tx:=array(0..Nt):U:=array(0..Nt):U_map:=array(0..Nt);

> for j from 0 to Nt do

x:=j*h;z:=fU(x);Tx[j]:=x;U[j]:=z;U_map[j]:=z;

#print(x,z);

od:

> RisU:=zip(pp,Tx,U):

> RU:=plot(RisU):

> display(RU):;

> #====================================

> RisU:=zip(pp,Tx,U):

> whattype([RisU]);

> RU0:=plot(RisU,style=point,symbol=cross):

> display(RU0):;

> R:=proc(Nt,T::array,U::array)

local k,j,t,z,Af::array,Uf::array,RAf,RisAf;

Af:=array(0..Nt);Uf:=array(0..2*Nt);

for j from 0 to Nt do Uf[j]:=U[j];Uf[j+Nt]:=U[j];

end;

for j from 0 to Nt do

t:=0;

for k from 0 to Nt do

t:=t+evalf(Uf[k]*Uf[k+j]);

end;

Af[j]:=evalf(t/Nt);

end;

RAf:=zip(pp,T,Af);RisAf:=plot(RAf):

display(RisAf);

end:

> R(Nt,Tx,U);

>

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++=

>

> fn:=`C:\\work\\mashko.txt`;

>

>

++++++++++++++++++++++++++++++++++++++++++++++++++++

> L:=readdata(fn,2):;

Nstrok:=vectdim(L);

> U_n:=array(1..Nstrok);:

T_n:=array(1..Nstrok);

> for j from 1 to Nstrok do

T_n[j]:=L[j,1];

U_n[j]:=L[j,2];

#print(j,T_n[j],U_n[j]);

od:

> u1:=zip(pp,T_n,U_n):

> RU1:=plot(u1,style=point,symbol=cross,color=black):

> display(RU,RU1);

> #printf("%s",`  №      t      U_map    U_pas     разн \n`);

for k from 0 to Nt do t:=Tx[k]:del:=U_map[k]-U_n[k+1];

#printf("% 3.0f  % 6.2f % 8.4f  % 8.4f % 8.4f \n",k,t,U_map[k],U_n[k+1],del):

end:;

unit part2;

interface

uses

 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

 Dialogs, Menus, StdCtrls;

type

 TForm1 = class(TForm)

   MainMenu1: TMainMenu;

   N1: TMenuItem;

   N2: TMenuItem;

   N3: TMenuItem;

   SaveDialog1: TSaveDialog;

   ListBox1: TListBox;

   Label1: TLabel;

   Label2: TLabel;

   N4: TMenuItem;

   N5: TMenuItem;

   N6: TMenuItem;

   Label3: TLabel;

   Label4: TLabel;

   procedure N3Click(Sender: TObject);

   procedure N2Click(Sender: TObject);

   procedure N5Click(Sender: TObject);

   procedure N6Click(Sender: TObject);

 private

   { Private declarations }

 public

   { Public declarations }

 end;

var

 Form1: TForm1;

implementation

{$R *.dfm}

const

  U0=0.15;

  nzac=2;

  koc=2;

  hintegr=0.05;

  Npoint=100;

var

      tau:real; {период сигнала}

      Koeff:real; {равен периоду}

      min,sec:byte;

      frez:string;

      ftxt:text;

{===================корень полинома==============}

{фунция, задающая вычисление полинома в точке}

function polynom(t:real):real;

begin

  polynom:=sqr(sqr(t))*sqr(t)+sqr(t)*t-5;

end;

{процедуры метода простой итерации}

function derive(x:real):real;

begin

 derive:=6*sqr(sqr(x))*x+3*sqr(x);

end;

procedure Iter(a,b:real;var root:real;var K:integer);

const

 eps=0.0000001;{погрешность определения корня}

 Q0=1.5; {нормирующий множитель для ламбда}

var

 lambda:real;

 g:real;

 x,x0:real;

begin

  g:=derive(b);

   form1.label2.caption:='max производной =  '+ floattostrF (g, ffGeneral, 5, 1);

   lambda:=1.99/g;

   x:=(a+b)/2;

   k:=0;

   repeat

     x0:=x;

     x:=x0-lambda*polynom(x0);

     form1. listbox1.Items.Add(floattostrF(x,ffGeneral, 12, 9));

     k:=k+1;

   until abs(x-x0)<eps;

   root:=x;

end;

function signal(t:real):real;{сигнал 9 варианта}

var

 z:real;

begin

  if t<0 then

      z:=0

     else

       if t<1/2 then

           z:=1

       else

     if t<1 then

    z:=0;

      signal:=z;

end;

function Period(x,T:real):real;

 var

   z:real;

begin

  z:=x-trunc(x/T)*T;{выделение дробной части}

  Period:=signal(z);

end;

{====================правая часть диф. уравнения===}

function F(t,U:real):real;

begin

 F:=Nzac*(cos((4+nzac/10)*t+U)+Koeff*Period(t,Koeff)-Koc*U);

end;

procedure difur;

var

 j:integer;

 U,t:real;

 U1,U11:real;

 strU,strt:string;

begin

 form1.listbox1.Clear;

  U:=U0;

  t:=0;

  Koeff:=Tau;

  for j :=0 to Npoint+1 do

  begin

  strt:=floattostrF(t,ffGeneral, 7, 4);

    strU:=floattostrF(U,ffGeneral, 7, 4);

    form1. listbox1.Items.Add(strt+'   '+ stru);

    writeln(ftxt,t:8:2,' ',U:8:3);

    {Метод Эйлера}

         U1:=U+hintegr*F(t,U)/2;

         U11:=U+hintegr*F(t,U1);

         U:=U11;

         t:=t+hintegr;

  end;

end;

procedure TForm1.N2Click(Sender: TObject);

begin

if savedialog1.Execute then

  begin

    frez:=savedialog1.FileName;

    label1.caption:='эапись в файл '+#10+frez;

  end;

  assignfile(ftxt,frez);

   rewrite(ftxt);

end;

procedure TForm1.N3Click(Sender: TObject);

begin

closefile(ftxt);

Form1.Close;

end;

procedure TForm1.N5Click(Sender: TObject);

var

a,b:real;

kiter:integer;

begin

   Form1.Caption:='Вычисляем корень полинома';

    b:=3;

    a:=0;

   {здесь вызов алгоритма вычисления корня уравнения}

   Iter(a,b,Tau,Kiter);{вызов процедуры метода итераций}

   Label3.Caption:='корень равен '+floattostr(Tau);

   Label4.Caption:='число итераций '+inttostr(Kiter);

end;

procedure TForm1.N6Click(Sender: TObject);

begin

difur;

end;

end.


НАЧАЛО

ункция f(x)

t<0

Z=0

Z=0

f(x)=z

Z=1

t<0,5

КОНЕЦ


 

А также другие работы, которые могут Вас заинтересовать

42401. Философия эпохи возрождения, антропоцентризм - принцип возрожденческой философии 80.5 KB
  Это представление дало название целой эпохе эпохе Возрождения или что тоже если использовать французское выражение эпохе Ренессанса приблизительно XIVXVI вв. В эпоху Возрождения было выработано новое философское мировоззрение прежде всего благодаря творчеству целой плеяды выдающихся философов таких как Николай Кузанский Марсилио Фичино Леонардо да Винчи Микеланджело Джордано Бруно и др. Этот шаг и был сделан в эпоху Возрождения с максимальной решительностью которая вообще часто характерна для новаторов.
42402. ИНФОРМАЦИОННЫЕ СИСТЕМЫ В ЭКОНОМИКЕ 14.01 MB
  Напротив каждого сектора появилось значение в рублях или значение в процентах от общей суммы товарооборота соответственно. Постройте круговую диаграмму показывающую удельный вес поступлений в рублях по каждому виду товара в общей сумме по складу.03 на сумму превышающую 2000000 руб. рублей.
42404. Работа со сканером 325.5 KB
  Планшетные сканеры пригодны как для качественного сканирования цветных изображений так и для более или менее быстрого ввода текстовых документов. Для процесса сканирования необходимо задать такие параметры: Тип изображения цветное чернобелое с оттенками серого или чернобелое Разрешение сканирования DPI Яркость и контрастность Имя тип и место расположения получаемого графического файла. Нажать на кнопку настроить и: выбрать тип изображения цветной снимок затем поменять разрешение сканирования на 300 dpi....
42405. Имитация трёхмерного текста 87 KB
  Нажмите [ltBckspce] [CtrlBckspce] [ltDelete] [CtrlDelete] чтобы залить фон черным цветом. Выберите пункт меню Edit Trnsform Perspective или нажмите [CtrlT] свободная трансформация и удерживая клавишу [Ctrl] передвигайте за углы и придайте надписи вид сходный с рисунком ниже. Затем скопируйте получившийся слой [CtrlJ] путём перетаскивания его на иконку Crete New Lyer в палитре Lyers Слои. Переключитесь на слой Bckground и нажмите [CtrlShiftE] чтобы произвести слияние видимых слоёв.
42406. Создание «металлических» надписей 99 KB
  Новому каналу будет автоматически присвоено имя lph 1. Скопируйте канал lph 1 путём перетаскивания его на пиктограмму Crete New Chnnel в палитре Chnnels. Новому каналу будет присвоено имя lph 2 и он станет активным. Примените к каналу lph 2 фильтр Gussin Blur со значением 3 pixels.
42407. Работа с режимом редактирования маски 476 KB
  Нажмите [D] чтобы установить foreground цвет в черный. Нажмите [CtrlI] чтобы инвертировать выделение после чего нажмите [Del] чтобы удалить ненужное выделение. Нажмите [CtrlD] чтобы снять выделение. Нажмите OK.
42408. Работа с простыми объектами в Corel Draw 66 KB
  Порядок выполнения работы Для того чтобы нарисовать линию необходимо воспользоваться горячей клавишей [F5] или иконкой на панели инструментов. Для того чтобы вставить прямоугольник можно воспользоваться иконкой на панели инструментов или горячей клавишей [F6]. Для того чтобы вставить окружность можно воспользоваться горячей клавишей [F7] или воспользоваться иконкой на панели задач. Как и с прямоугольником можно воспользоваться дополнительными клавишами [Ctrl и или Shift].
42409. Работа с текстом и заливкой в Corel Draw 383.5 KB
  Для того чтобы залить объект заливкой можно воспользоваться одним из инструментов: Fill Color Dilog [ShiftF11] Fountin Fill Dilog [F11] Pttern Fill Dilog Texture Fill Dilog PostScript Fill Dilog Not Fill. Fill Color Dilog Fountin Fill Dilog Pttern Fill Dilog Texture Fill Dilog PostScript Fill Dilog Not Fill убирает заливку Содержание отчета Тема и цель лабораторной работы Отчет о проделанной работе Вывод Контрольные вопросы Как с помощью горячих клавиш вставить текст Какие параметры текста можно выставить на...