49218

Проектирование транзисторных широкодиапазонных передатчиков

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Задачей курсового расчета является проектирование транзисторного широкодиапазонного радиопередающего устройства обеспечивающего формирование радиосигналов заданном рабочем диапазоне частот и заданную мощность выделяемую на нагрузке в состав которого входят следующие каскады: ОКГ опорный кварцевый генератор являющийся источником высокостабильных колебаний необходимо произвести расчет принципиальной схемы автогенератора с кварцевым резонатором в цепи обратной связи; ССЧ синтезатор сетки частот формирующий из опорной частоты...

Русский

2013-12-23

348.55 KB

9 чел.

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И.Ульянова (Ленина)»

(СПбГЭТУ)

Факультет радиотехники и телекоммуникаций

Кафедра радиоэлектронных средств

КУРСОВАЯ РАБОТА

По дисциплине: «Устройства генерирования и формирования радиосигналов»

На тему: «Проектирование транзисторных широкодиапазонных передатчиков»

(Вариант № 15)

Выполнил

Оценка __________________

студент гр. 9105  

    Проверил

Эм К.Ю.

Дата ____________________

     Санкт-Петербург

2013г.

1. Введение

Задачей курсового расчета является проектирование транзисторного широкодиапазонного радиопередающего устройства, обеспечивающего формирование радиосигналов заданном рабочем диапазоне частот и заданную мощность, выделяемую на нагрузке, в состав которого входят следующие каскады:

  1. ОКГ - опорный кварцевый генератор, являющийся источником высокостабильных колебаний (необходимо произвести расчет принципиальной схемы автогенератора с кварцевым резонатором в цепи обратной связи);
  2. ССЧ - синтезатор сетки частот, формирующий из опорной частоты необходимые рабочие частоты (необходимо разработать функциональную схему компенсационного синтезатора сетки частот);
  3. ОК - оконечный каскад, обеспечивающий сопряжение устройства с другими и необходимую мощность (необходимо рассчитать принципиальную схему двухтактного усилителя, выполненного на биполярных транзисторах).

ОКГ и ССЧ представляют собой возбудитель, работающий на малой мощности для обеспечения более высокостабильных колебаний.

2. Задание на курсовую работу

Параметры курсового проекта:

Тип ОКГ

fкв, МГц

Тип ССЧ

Диапазон частот fн-fв, МГц

Шаг сетки fш, кГц

Вид модуляции

Тип транзистора

2

1

PLL

1-21

2

A3В

2П979Б

kд

р

1,8

6

3. Функциональная схема передатчика

Передатчик может быть представлен как совокупность блоков:

Рис. 3.1 Функциональная схема передатчика.

ТУМ – тракт усиления мощности.

ОК – оконечный каскад.

УССФ – устройства согласования, связи и фильтрации.

Возбудитель может быть представлен совокупностью трёх блоков:

Рис. 3.2 Функциональная схема возбудителя.

ОКГ – опорный кварцевый генератор.

ССЧ – синтезатор сетки частот.

УВИС – устройство ввода информационного сигнала.


4. Расчёт опорного кварцевого генератора.

Автогенератор — это прибор, преобразующий энергию источников питания в энергию высокочастотных колебаний без внешнего возбуждения. Автогенераторы являются первичными источниками колебаний, амплитуда и частота которых определяются только собственными параметрами схемы и должны в очень малой степени зависеть от внешних условий. В составе автогенератора обязательно должны быть генераторный прибор и колебательная система. Генераторный прибор управляет подачей порций энергии источников питания в колебательную систему для поддержания в ней колебаний постоянной амплитуды. Колебательная же система используется для задания частоты колебаний, обычно близкой к одной из ее собственных частот.

В данном варианте курсовой работы применяется схема автогенератора с кварцевым резонатором в цепи обратной связи. В такой схеме кварцевый резонатор используется как высокодобротный последовательный контур.

4.1 Расчёт автогенератора (АГ).

Выбираем транзистор КТ324.

Параметры транзистора:

Тип прово-димости

Основные параметры

Предельные параметры

fт, ГГц

Sгр, A

β0

Eб0, В

Ск, пФ

rб, Ом

uk, В

uэ-б, В

iк, А

Pк, Вт

n-p-n

0,6..0,8

0,03

40

0,6

3,75

100

10

4

0,02

0,025

Параметры кварцевого резонатора:

fкв, МГц

Rкв, Ом

Qквˑ10-3

C0, пФ

1

150

45

8

Задаемся мощностью, рассеиваемой КвР, = 0,2 мВт.

Расчет параметров транзистора

1. Максимально возможная амплитуда импульса коллекторного тока транзистора (приняв α1=0,472, для угла отсечки θ=800):

  = = 3,46 мA.  

2. Задаемся = 3 мА и определяем значение крутизны коллекторного тока: A/B, таким образом, средняя крутизна тока по первой гармонике: A/B,  далее определим значение амплитуды первой гармоники напряжения на базе транзистора (зная, что Ik11*ikm=0.472*3мА=1,416мА и = S1): = Ik1/S1 = 0,09В.

Расчет параметров колебательной системы и цепи обратной связи

1. Сопротивление резистора в эмиттерной цепи = 0,09 / = 413,6 Ом. (В ряду Е24: 430Ом).

2. Сопротивление  =413,6/(1+0,016413,6)= 54,96 Ом. Задаемся = 0,25150= 37,5 Ом.

3. Вспомогательный параметр

=0,01637,554,96/(150+37,5+54,96) = 0,134.

4. Отношение емкостей  = 0,134(1–0,134) = 0,155.

5. Эквивалентное сопротивление контура

=37,5 (1+0,155)/0,155=2085 Ом.

6. Задаемся добротностью контура =50.

7. Параметры колебательной системы

=2085/50= 41,7 Ом;

=1/(2π11041,7) = 3817 пФ;

= 41,7/(2π110) = 6,64 мкГн;

С2 = Ск (1+К)/К = 3817 (1+0,155) / 0,155 = 28460 пФ; (для ряда Е24: 27000пФ)

= 0,15528,46 нФ = 4,41 нФ.                            (для ряда Е24: 4300 пФ)

8. Индуктивность, нейтрализующая емкость кварцедержателя =1/= 3,16 мкГн (для Е24: 330 мкГн).

Расчет энергетических параметров автогенератора

1. Параметр = (150+54,96) /2085 =5,466.

2. Сопротивление коллекторной нагрузки транзистора =2085/=1321 Ом.

3. Амплитуда напряжения на коллекторе

= 3100,4721321 = 1,871 В.

Расчет режима работы транзистора

1. Постоянное напряжение на коллекторе транзистора

= 0,310 = 3 В.

2. Проверка недонапряженного режима работы

= 3  0,003 / 0,03 = 2,9 B.

3. Модуль эквивалентного сопротивления колебательного контура

= 1,871 /0,0014 = 1336 Ом.

4. Мощность, потребляемая транзистором от источника коллекторного напряжения, где =0,286: = 3  0,003  0,286 = 0,00257 Вт.

5. Мощность, рассеиваемая на коллекторе транзистора,

= 0,00257  0,0002 = 0,00237 Вт = 2,37 мВт.

6. Коэффициент полезного действия транзистора

= 0,2/2,57 = 0,0777.

7. Постоянная составляющая тока базы

= 0,003  0,286/40 = 0,02145 мA.

8. Напряжение смещения на базе

= -0,09  0,174 + 0,6 =0,584 В.

Расчет элементов цепей питания

1. Сопротивление делителя смещения в цепи базы

(20...50)X2 < Rд < Rэ(4...6), где Х2 = 1 /C2 = 1/2  1  106  28,46  10  5,59 Ом.

         Выбираем Rэ = 50/S0 = 50/0,04 = 1,25 кОм = 1250 Ом.

Выбираем Rд = 4 кОм, тогда находим

, где

постоянная составляющая коллекторного тока: Ik0=0,003*0,286 = 0,858 мА, тогда

Еик = 3 + 0,858*10-3*1,25*103 = 4,061 В

          А затем находим сопротивления R1 и R2:

R1 = 4,061*4000/(0,858*1,25+0,584+0,02145*4) = 9,38 кОм, (ряд Е24: 9,1 кОм)

R2 = 4000*9380/(9380-4000) = 6,972 кОм                                   (ряд Е24: 6,5 кОм)

2. Емкость конденсатора Сэ:

  Uкгр = 3-0,003/0,03 = 2,9 В

Сэ = 20*0,0014/(2*3,14*1*106*0,09) = 50,22 нФ

(для ряда Е24: 51 нФ).

5. Расчёт транзисторного широкодиапазонного усилителя.

Для достижения необходимого уровня мощности на выходе генератора необходимо применить тракт усиления мощности, построенный на основе транзисторов. Транзисторы являются сравнительно маломощными приборами, поэтому для построения мощного усилителя нужно будет использовать несколько двухтактных ячеек, одна из которых изображена на рис. 5.1. Преимущество двухтактной схемы заключается в том, что на выходе её отсутствуют все нечётные гармоники кроме первой, а если установить угол отсечки 90˚, то можно добиться и отсутствие чётных гармоник.

Для расчёта оконечного каскада по заданию нужно использовать транзистор 2П979Б, который имеет следующие характеристики:

Тип

Еси, В

Рвых, Вт

f, МГц

S, А/В

Е0, В

Sгр, А/В

Сзи, пФ

Сси, пФ

Сзс, пФ

Uси, В

iсдоп, А

Rт. п-к, °С/Вт

t п. доп, °С

2П979Б

28

150

230

2,9

2,0-6,0

4

225

185

30

65

28

0,88

200

Параметры транзисторов: uк.доп, iк m доп , Iк0 доп , tп. доп – максимально допустимые значения напряжения между коллектором и эмиттером, В, амплитуды импульса и постоянной составляющей коллекторного тока, А, температуры перехода, С; fт –граничная частота, МГц; 0 = h21 оэ – низкочастотное значение коэффициента передачи по току в схеме с общим эмиттером; Lэ, Lк, Lб – индуктивности выводов транзистора, нГн; Ск – суммарная емкость коллекторного перехода, пФ; rб – сопротивление тела базы, Ом; rнас – сопротивление насыщения коллекторного перехода, Ом; Rт.п-к – тепловое сопротивление участка переход - корпус транзистора, С/Вт. Для fт и 0 приведены усредненные значения.

5.1.  Расчет выходной цепи усилителя

1. Допустимое значение мощности рассеиваемой на стоке Pс:

       Примем температура корпуса (Tк) равной 700С.

        Вт

2.Определим амплитуду импульса тока стока:

 Eс = 28 В

Ic = 35,67 А, но максимальное допустимое значение тока стока 28 А, дальше считаем для него.

3. Рассчитаем сопротивление:

Rc = 1,5 Ом, но минимально возможное значение волнового сопротивления кабеля в таблице – 3.2 Ом, считаем дальше для этого значения.

4. Амплитуда импульса тока стока:

А

А

   Найденное значение iсm не превышает предельно допустимого.

Амплитуда первой гармоники тока стока:

 А , где  для угла отсечки 900

    Минимальное (остаточное) напряжение на стоке:

      В

Амплитуда переменного напряжения на стоке:

В

Мощность, отдаваемая транзистором:

Вт

Максимальное мгновенное значение напряжения на стоке:

= 52,216 В

Постоянная составляющая тока стока:

 А

5. Мощность, потребляемая транзистором от источника питания:

Вт

6. Мощность, рассеиваемая на стоке:

        Вт

7. Коэффициент полезного действия:

5.2.  Расчет входной цепи усилителя

Преобразование физической эквивалентной схемы транзистора (рис. 5.2, а) в эквивалентную схему (рис. 5.2, б):

Рис. 5.2

1. Нагрузочный коэффициент, учитывающий снижение усиления за счет действия обратной связи через проходную емкость транзистора:

kн = 1/(1 + Rс/Ri) = 1/(1+3,2/5,172) = 0,618,

где Rс = 3,2 Ом – сопротивление нагрузки транзистора (по первой гармонике);
Ri = iRi  = 5,172 Ом – выходное сопротивление транзистора по первой гармонике,  i – коэффициент приведения внутреннего сопротивления (i = 2 при угле отсечки  = 90), а

Ri = 225/2,9*30 =  2,586 Ом

2. Амплитуда напряжения на входе фазового контура, равного напряжению между затвором и истоком транзистора:

Uвх = Iс1/ kн 1S = 7,568/0,618*0,5*2,9 = 8,448 В.

3. Коэффициент усиления каскада по напряжению

KU = Uс/Uвх = 24,216/8,448 = 2,866.

4. Входная емкость транзистора

Cвх = Cзи + Cзс(1+KU) = 225+30*(2,866+1) = 341 пФ.

5. Расчет входной согласующей цепи:

Выберем Lи0 = 1 нГн

rвх = 0,618*2,9*1*10-9/225*10-9 = 7,963 Ом

ωs = 1/7,963*341*10-12 = 368,3 * 106 с-1

Граничная частота транзистора больше верхней частоты рабочего диапазона (131,9*106 с-1), поэтому считаем входное сопротивление транзистора ёмкостным. Выбираем неравномерность 0,5 дБ и соответственно коэффициенты b1=0.68, b2=0.93. Рассчитываем недостающие параметры:

Rбал = 2*0,93/131,9*106*341*10-12 = 41,34 Ом.

  С0 = 341*10-12*0,68/4*0,93 = 62,33 пФ.

       L = 2*0,932/(131,9*106)2*341*10-12 = 291,4 нГн.

                                   Lвх = 10 нГн.

   М = 145,7*10-9*(1-0,68/0,93)+10*10-9 = 49,16 нГн.

Lобщ = 2*(291,4 – 49,16) = 484,4 нГн.

6. Мощность, необходимая для возбуждения каскада

Pвх = Uвх2/2Rвх = 8,4482/2*41,43 = 0,861 Вт

7. Коэффициент усиления каскада по мощности

KP = P1/Pвх = 91,629/0,861 = 106,374.

6. Расчёт блока коммутируемых фильтров.

В широкополосных передатчиках, каскады которых не содержат резонансные фильтрующие цепи, между выходом устройства сложения мощностей отдельных двухтактных схем и входом согласующего устройства включается блок коммутируемых фильтров.

Каждый из фильтров блока может быть выполнен либо в виде ФНЧ, граничная частота которого меньше частоты второй гармоники усиливаемого сигнала, либо в виде полосового фильтра, верхняя ωвi и нижняя ωнi граничные частоты которого удовлетворяют соотношению ωвi/ωнi=kдi.

Рис. 6.1 Принципиальная схема фильтра.

Нижняя рабочая частота: с-1

Верхняя рабочая частота: с-1

Возьмём примерно коэффициент перекрытия

Количество фильтров = 5,18 ≈ 5.

Получаем диапазоны частот, на которые будут настроены фильтры:

.

1-й фильтр:  6,28…11,30 *106 с-1

2-й фильтр:  11,30…20,35 *106 с-1

3-й фильтр:  20,35…36,62 *106 с-1

4-й фильтр:  36,62…65,92 *106 с-1

5-й фильтр:          65,92…118,66 *106 с-1

7. Расчёт синтезатора сетки частот.

Для получения совокупности номинальных значений частот в заданном диапазоне, следующих друг за другом с заданным интервалом используется синтезатор сетки частот, схема которого приведена на рис. 7.1.

Рис. 7.1 Структурная схема синтезатора сетки частот.

Данная схема является многокольцевым ССЧ, т.к. каждый перемножитель f·Ni представляет систему с замкнутым кольцом фазовой автоподстройки частоты (ФАП). Такие устройства характеризуются сложностью настройки, но обеспечивают низкий уровень побочных составляющих.

Учитывая операции над частотами, осуществляемые в каждом из блоков ССЧ, для частоты сигнала на выходе синтезатора справедливо:

,

где (i=1,2,..5) – коэффициенты деления делителей с переменным коэффициентом деления в каждом из колец ФАП. Коэффициенты удовлетворяют соотношениям:

где ; , - максимальное и минимальное значения коэффициента деления в i-м кольце ФАП. Тогда получаем:

Принимаем величину шага сетки fш = 2 кГц и значение эталонной частоты    кГц. Будем рассчитывать .

Чтобы обеспечить значение в соответствии с заданием, необходимо подбирать :

 

 

 

 

 

 При  этом    должно быть целым числом.

Предположим :

 

 Комбинационные составляющие порядка меньше  6 не  должны попадать в полосу пропускание полосового фильтра.

Проверка:

 

 

Следовательно:

Проверка:

 

= 769,93

= 900

должно удовлетворять неравенству:

= 462,5, где  – максимально возможная цифра в старшем разряде частоты выходного сигнала.

Полученное нами значение  удовлетворяет условию (900>462,5).

Вывод:

В результате выполнения курсового проекта была разработана структурная схема синтезатора сетки частот, рассчитаны принципиальные схемы опорного кварцевого генератора, широкополосного двухтактного усилительного каскада. Разработана соответствующая конструкторская документация: структурные, электрические принципиальные схемы и спецификации.

Список литературы

  1.  Митрофанов А. В., Полевой В. В., Сафин В.Г., Соловьев А. А. Учебное пособие. Устройства генерирования и формирования радиосигналов.


 

А также другие работы, которые могут Вас заинтересовать

75415. Способы глагольного действия. Их соотношение с видом 17.09 KB
  С категорией вида тесно связаны лексико-грамматические разряды глаголов называемые способами глагольного действия. Иначе говоря способы глагольного действия это такие семантико-словообразовательные группировки глаголов в основе которых лежат модификации изменения значений беспрефиксных глаголов с точки зрения временных количественных специально результативных характеристик значение начала действия может быть выражено различными префиксами: за по вз воз: заговорить пойти вскричать одноактность мигнуть Мы характеризуем какой...
75416. Оптичні давачі. Давачі дифузного типу 2.47 MB
  Давачі дифузного типу Давач дифузного типу створений за принципом давача з відбиттям від рефлектора. Давачі дифузного типу Давач дифузного типу з придушенням заднього фону Давачі дифузного типу з придушенням заднього фону були розроблені для того щоб досягти визначеного діапазону сканування для будьяких обєктів незалежно від їх яскравості кольору та інших властивостей а також від яскравості заднього фону. Такі давачі ігнорують всі обєкти які знаходяться до давача ближче ніж попередньо налаштований діапазон виявлення.
75417. Безконтактний магніточутливий давач 262 KB
  Давач що виявляє зміну напруженості постійного магнітного поля має напівпровідниковий комутуючий елемент і що не містить рухомих частин в чутливому елементі рис. Спрацювання давача відбувається при зміні напруженості магнітного поля викликаного наприклад переміщенням постійного магніту розташованого на рухомої частини механізму. Крім того магніточутливих давачи можуть відрізнятися по реакції на зміну магнітного поля: При збільшенні напруженості зовнішнього магнітного поля наприклад при наближенні постійного магніту...
75418. Блоки живлення, лічильники імпульсів, реле часу, сигналізатори рівня, розєми і зєднувачі, вибухобезпечне устаткування 753.5 KB
  Блок живлення — це вторинне джерело живлення, призначене для забезпечення живлення електроприладу електричною енергією, при відповідності вимогам її параметрів: напруги, струму, і т. д. шляхом перетворення енергії інших джерел живлення.
75419. Сенсори. Аналогові сенсори. Сенсори положення, кута, віддалі та товщини 575 KB
  Сенсори положення кута віддалі та товщини. Аналогові сенсори За допомогою аналогових сенсорів перетворюють механічні величини наприклад зміну положення або електричні величини наприклад зміну потужності на електричні сигнали напруги або струму. Сигнали з вимірювального перетворювача можуть бути представлені у фізичних величинах наприклад у випадку перетворювача положення в мм. Сенсори положення кута віддалі та товщини Потенціометричні контактні сенсори При пересуванні ковзного контакту в поступальному потенціометрі або повороту...
75420. Індуктивні безконтактні кінцеві сигналізатори 568 KB
  Котушка з відкритим, чашковим феромагнітним осердям створює високочастотне електромагнітне поле. Котушка є індуктивною частиною коливного контуру, який збуджується за допомогою частотного генератора з частотою близько
75421. Сенсори розтягу, сили, обертового моменту i тиску 585 KB
  Види виконання вимірювальних сіток фольгових тензометрів Для одночасного вимірювання в кількох напрямках служать спеціальні тензометри в яких вимірювальні сітки розміщені одна відносно іншої під кутом 120 або під кутом 45 до напрямку видовження рис.
75422. Сенсори прискорення. Сенсори температури 164 KB
  Сенсори температури. Сенсори температури Найважливішим різновидом давачів є давачі температури оскільки багато процесів у тому числі і в повсякденному житті регулюються температурою наприклад: регулювання опалення на підставі вимірювання температури теплоносія на вході і виході а також температури в приміщенні і зовнішньої температури; регулювання температури води в пральній машині; регулювання температури електропраски електроплитки духовки...
75423. Бінарні сенсори. Цифрові сенсори 480 KB
  Бінарні сенсори влаштовані як реле (перемикачі) або як аналогові сенсори з перемикачем порогового значення. Коли вхідна величина сенсора досягає порогу перемикання, бінарний вихідний сигнал змінює значення. Під час зміни вхідної величини у зворотному напрямі, по досягненню порогового значення...