49227

Расчет транзисторных широкодиапазонных передатчиков

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Задачей курсового расчета является проектирование транзисторного широкодиапазонного радиопередающего устройства, обеспечивающего формирование радиосигналов заданном рабочем диапазоне частот и заданную мощность, выделяемую на нагрузке, в состав которого входят следующие каскады...

Русский

2013-12-23

348.66 KB

10 чел.

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И.Ульянова (Ленина)»

(СПбГЭТУ)

Факультет радиотехники и телекоммуникаций

Кафедра радиоэлектронных средств

КУРСОВАЯ РАБОТА

По дисциплине: «Устройства генерирования и формирования радиосигналов»

На тему: «Проектирование транзисторных широкодиапазонных передатчиков»

(Вариант № 24)

Выполнил

Оценка __________________

студент гр. 9105  

    Проверил

Калинина М.М.

Дата ____________________

     Санкт-Петербург

2013г.

1. Введение

Задачей курсового расчета является проектирование транзисторного широкодиапазонного радиопередающего устройства, обеспечивающего формирование радиосигналов заданном рабочем диапазоне частот и заданную мощность, выделяемую на нагрузке, в состав которого входят следующие каскады:

  1. ОКГ - опорный кварцевый генератор, являющийся источником высокостабильных колебаний (необходимо произвести расчет принципиальной схемы автогенератора с кварцевым резонатором в цепи обратной связи);
  2. ССЧ - синтезатор сетки частот, формирующий из опорной частоты необходимые рабочие частоты (необходимо разработать функциональную схему компенсационного синтезатора сетки частот);
  3. ОК - оконечный каскад, обеспечивающий сопряжение устройства с другими и необходимую мощность (необходимо рассчитать принципиальную схему двухтактного усилителя, выполненного на биполярных транзисторах).

ОКГ и ССЧ представляют собой возбудитель, работающий на малой мощности для обеспечения более высокостабильных колебаний.

2. Задание на курсовую работу

Параметры курсового проекта:

Тип ОКГ

fкв, МГц

Тип ССЧ

Диапазон частот fн-fв, МГц

Шаг сетки fш, кГц

Вид модуляции

Тип транзистора

2

3

PLL

1-20

2

A3J

VRF151

kд

р

1,8

5

3. Функциональная схема передатчика

Передатчик может быть представлен как совокупность блоков:

Рис. 3.1 Функциональная схема передатчика.

ТУМ – тракт усиления мощности.

ОК – оконечный каскад.

УССФ – устройства согласования, связи и фильтрации.

Возбудитель может быть представлен совокупностью трёх блоков:

Рис. 3.2 Функциональная схема возбудителя.

ОКГ – опорный кварцевый генератор.

ССЧ – синтезатор сетки частот.

УВИС – устройство ввода информационного сигнала.


4. Расчёт опорного кварцевого генератора.

Автогенератор — это прибор, преобразующий энергию источников питания в энергию высокочастотных колебаний без внешнего возбуждения. Автогенераторы являются первичными источниками колебаний, амплитуда и частота которых определяются только собственными параметрами схемы и должны в очень малой степени зависеть от внешних условий. В составе автогенератора обязательно должны быть генераторный прибор и колебательная система. Генераторный прибор управляет подачей порций энергии источников питания в колебательную систему для поддержания в ней колебаний постоянной амплитуды. Колебательная же система используется для задания частоты колебаний, обычно близкой к одной из ее собственных частот.

В данном варианте курсовой работы применяется схема автогенератора с кварцевым резонатором в цепи обратной связи. В такой схеме кварцевый резонатор используется как высокодобротный последовательный контур.

4.1 Расчёт автогенератора (АГ).

Выбираем транзистор КТ324.

Параметры транзистора:

Тип прово-димости

Основные параметры

Предельные параметры

fт, ГГц

Sгр, A

β0

Eб0, В

Ск, пФ

rб, Ом

uk, В

uэ-б, В

iк, А

Pк, Вт

n-p-n

0,6..0,8

0,03

40

0,6

3,75

100

10

4

0,02

0,025

Параметры кварцевого резонатора:

fкв, МГц

Rкв, Ом

Qквˑ10-3

C0, пФ

3

82

45

5

Задаемся мощностью, рассеиваемой КвР, = 0,2 мВт.

Расчет параметров транзистора

1. Максимально возможная амплитуда импульса коллекторного тока транзистора (приняв α1=0,472, для угла отсечки θ=800):

  = = 4,679 мA.  

2. Задаемся = 4,5 мА и определяем значение крутизны коллекторного тока: A/B, таким образом, средняя крутизна тока по первой гармонике: A/B,  далее определим значение амплитуды первой гармоники напряжения на базе транзистора (зная, что Ik11*ikm=0.472*4.5мА=2,124мА и = S1): = Ik1/S1 = 0,094В.

Расчет параметров колебательной системы и цепи обратной связи

1. Сопротивление резистора в эмиттерной цепи = 0,094 / = 1114 Ом. (В ряду Е24: 1100Ом).

2. Сопротивление  =1114/(1+0,0231114)= 42,69 Ом. Задаемся = 0,2582= 20,5 Ом.

3. Вспомогательный параметр

=0,02320,542,69/(82+20,5+42,69) = 0,136.

4. Отношение емкостей  = 0,136(1–0,136) = 0,157.

5. Эквивалентное сопротивление контура

=20,5 (1+0,157)/0,157=1112 Ом.

6. Задаемся добротностью контура =50.

7. Параметры колебательной системы

=1112/50= 22,24 Ом;

=1/(2π31022,24) = 2386 пФ;

= 22,24/(2π310) = 1,18 мкГн;

С2 = Ск (1+К)/К = 2386 (1+0,157) / 0,157 = 17570 пФ; (для ряда Е24: 18000пФ)

= 0,15717,57 нФ = 2,76 нФ.                            (для ряда Е24: 2700 пФ)

8. Индуктивность, нейтрализующая емкость кварцедержателя =1/= 562,9 мкГн (для Е24: 560 мкГн).

Расчет энергетических параметров автогенератора

1. Параметр = (82+42,69) /1112 =6,083.

2. Сопротивление коллекторной нагрузки транзистора =1112/=713,2 Ом.

3. Амплитуда напряжения на коллекторе

= 4,5100,472713,2 = 1,515 В.

Расчет режима работы транзистора

1. Постоянное напряжение на коллекторе транзистора

= 0,310 = 3 В.

2. Проверка недонапряженного режима работы

= 3  0,0045 / 0,03 = 2,85 B.

3. Модуль эквивалентного сопротивления колебательного контура

= 1,515 /0,00212 = 714,6 Ом.

4. Мощность, потребляемая транзистором от источника коллекторного напряжения, где =0,286: = 3  0,0045  0,286 = 0,00386 Вт.

5. Мощность, рассеиваемая на коллекторе транзистора,

= 0,00386  0,0002 = 0,00366 Вт = 3,66 мВт.

6. Коэффициент полезного действия транзистора

= 0,2/3,86 = 0,052.

7. Постоянная составляющая тока базы

= 0,0045  0,286/40 = 0,03217 мA.

8. Напряжение смещения на базе

= -0,094  0,174 + 0,6 =0,584 В.

Расчет элементов цепей питания

1. Сопротивление делителя смещения в цепи базы

(20...50)X2 < Rд < Rэ(4...6), где Х2 = 1 /C2 = 1/2  3  106  17,27  10  3,02 Ом.

         Выбираем Rэ = 50/S0 = 50/0,058 = 0,862 кОм = 860 Ом.

Выбираем Rд = 2 кОм, тогда находим

, где

постоянная составляющая коллекторного тока: Ik0=0,0045*0,286 = 1,287 мА, тогда

Еик = 3 + 1,287*10-3*0,86*103 = 4,109 В

          А затем находим сопротивления R1 и R2:

R1 = 4,109*2000/(1,287*0,86+0,584+0,03217*2) = 4,68 кОм, (ряд Е24: 4,7 кОм)

R2 = 2000*4677/(4677-2000) = 3,494 кОм                                   (ряд Е24: 3,6 кОм)

2. Емкость конденсатора Сэ:

  Uкгр = 3-0,0045/0,03 = 2,85 В

Сэ = 20*0,00212/(2*3,14*3*106*0,094) = 23,9 нФ

(для ряда Е24: 24 нФ).

5. Расчёт транзисторного широкодиапазонного усилителя.

Для достижения необходимого уровня мощности на выходе генератора необходимо применить тракт усиления мощности, построенный на основе транзисторов. Транзисторы являются сравнительно маломощными приборами, поэтому для построения мощного усилителя нужно будет использовать несколько двухтактных ячеек, одна из которых изображена на рис. 5.1. Преимущество двухтактной схемы заключается в том, что на выходе её отсутствуют все нечётные гармоники кроме первой, а если установить угол отсечки 90˚, то можно добиться и отсутствие чётных гармоник.

Для расчёта оконечного каскада по заданию нужно использовать транзистор VRF151, который имеет следующие характеристики:

Тип

Еси, В

Рвых, Вт

f, МГц

S, А/В

Е0, В

Sгр, А/В

Сзи, пФ

Сси, пФ

Сзс, пФ

Uси, В

iсдоп, А

Rт. п-к, °С/Вт

t п. доп, °С

VRF151

50

150

175

5,0

2,9-4,4

1

375

200

12

170

20

0,6

200

Параметры транзисторов: uк.доп, iк m доп , Iк0 доп , tп. доп – максимально допустимые значения напряжения между коллектором и эмиттером, В, амплитуды импульса и постоянной составляющей коллекторного тока, А, температуры перехода, С; fт –граничная частота, МГц; 0 = h21 оэ – низкочастотное значение коэффициента передачи по току в схеме с общим эмиттером; Lэ, Lк, Lб – индуктивности выводов транзистора, нГн; Ск – суммарная емкость коллекторного перехода, пФ; rб – сопротивление тела базы, Ом; rнас – сопротивление насыщения коллекторного перехода, Ом; Rт.п-к – тепловое сопротивление участка переход - корпус транзистора, С/Вт. Для fт и 0 приведены усредненные значения.

5.1.  Расчет выходной цепи усилителя

1. Допустимое значение мощности рассеиваемой на стоке Pс:

       Примем температура корпуса (Tк) равной 700С.

        Вт

2.Определим амплитуду импульса тока стока:

 Eс = 50 В

Ic = 23,39 А, но максимальное допустимое значение тока стока 20 А, дальше считаем для него.

3. Рассчитаем сопротивление:

Rc = 3 Ом, но минимально возможное значение волнового сопротивления кабеля в таблице – 3.2 Ом, считаем дальше для этого значения.

4. Амплитуда импульса тока стока:

А

А

   Найденное значение iсm не превышает предельно допустимого.

Амплитуда первой гармоники тока стока:

 А , где  для угла отсечки 900

    Минимальное (остаточное) напряжение на стоке:

      В

Амплитуда переменного напряжения на стоке:

В

Мощность, отдаваемая транзистором:

Вт

Максимальное мгновенное значение напряжения на стоке:

= 80,769 В

Постоянная составляющая тока стока:

 А

5. Мощность, потребляемая транзистором от источника питания:

Вт

6. Мощность, рассеиваемая на стоке:

        Вт

7. Коэффициент полезного действия:

5.2.  Расчет входной цепи усилителя

Преобразование физической эквивалентной схемы транзистора (рис. 5.2, а) в эквивалентную схему (рис. 5.2, б):

Рис. 5.2

1. Нагрузочный коэффициент, учитывающий снижение усиления за счет действия обратной связи через проходную емкость транзистора:

kн = 1/(1 + Rс/Ri) = 1/(1+3,2/12,5) = 0,796,

где Rс = 3,2 Ом – сопротивление нагрузки транзистора (по первой гармонике);
Ri = iRi  = 12,5 Ом – выходное сопротивление транзистора по первой гармонике,  i – коэффициент приведения внутреннего сопротивления (i = 2 при угле отсечки  = 90), а

Ri = 375/5*12 =  6,25 Ом

2. Амплитуда напряжения на входе фазового контура, равного напряжению между затвором и истоком транзистора:

Uвх = Iс1/ kн 1S = 9,615/0,796*0,5*5 = 4,831 В.

3. Коэффициент усиления каскада по напряжению

KU = Uс/Uвх = 30,769/4,831 = 6,37.

4. Входная емкость транзистора

Cвх = Cзи + Cзс(1+KU) = 375+12*(6,37+1) = 463,4 пФ.

5. Расчет входной согласующей цепи:

Выберем Lи0 = 1 нГн

rвх = 0,796*5*1*10-9/375*10-9 = 10,616 Ом

ωs = 1/10,616*463,4*10-12 = 203,3 * 106 с-1

Граничная частота транзистора больше верхней частоты рабочего диапазона (125,7*106 с-1), поэтому считаем входное сопротивление транзистора ёмкостным. Выбираем неравномерность 0,5 дБ и соответственно коэффициенты b1=0.68, b2=0.93. Рассчитываем недостающие параметры:

Rбал = 2*0,93/125,7*106*463,4*10-12 = 31,938 Ом.

  С0 = 463,4*10-12*0,68/4*0,93 = 87,71 пФ.

       L = 2*0,932/(125,7*106)2*463,4*10-12 = 236,4 нГн.

                                   Lвх = 10 нГн.

   М = 118,2*10-9*(1-0,68/0,93)+10*10-9 = 41,17 нГн.

Lобщ = 2*(236,4 – 41,17) = 389,2 нГн.

6. Мощность, необходимая для возбуждения каскада

Pвх = Uвх2/2Rвх = 4,8312/2*31,939 = 0,365 Вт

7. Коэффициент усиления каскада по мощности

KP = P1/Pвх = 147,929/0,365 = 404,955.

6. Расчёт блока коммутируемых фильтров.

В широкополосных передатчиках, каскады которых не содержат резонансные фильтрующие цепи, между выходом устройства сложения мощностей отдельных двухтактных схем и входом согласующего устройства включается блок коммутируемых фильтров.

Каждый из фильтров блока может быть выполнен либо в виде ФНЧ, граничная частота которого меньше частоты второй гармоники усиливаемого сигнала, либо в виде полосового фильтра, верхняя ωвi и нижняя ωнi граничные частоты которого удовлетворяют соотношению ωвi/ωнi=kдi.

Рис. 6.1 Принципиальная схема фильтра.

Нижняя рабочая частота: с-1

Верхняя рабочая частота: с-1

Возьмём примерно коэффициент перекрытия

Количество фильтров = 5,09 ≈ 5.

Получаем диапазоны частот, на которые будут настроены фильтры:

.

1-й фильтр:  6,28…11,30 *106 с-1

2-й фильтр:  11,30…20,35 *106 с-1

3-й фильтр:  20,35…36,62 *106 с-1

4-й фильтр:  36,62…65,92 *106 с-1

5-й фильтр:          65,92…118,66 *106 с-1

7. Расчёт синтезатора сетки частот.

Для получения совокупности номинальных значений частот в заданном диапазоне, следующих друг за другом с заданным интервалом используется синтезатор сетки частот, схема которого приведена на рис. 7.1.

Рис. 7.1 Структурная схема синтезатора сетки частот.

Данная схема является многокольцевым ССЧ, т.к. каждый перемножитель f·Ni представляет систему с замкнутым кольцом фазовой автоподстройки частоты (ФАП). Такие устройства характеризуются сложностью настройки, но обеспечивают низкий уровень побочных составляющих.

Учитывая операции над частотами, осуществляемые в каждом из блоков ССЧ, для частоты сигнала на выходе синтезатора справедливо:

,

где (i=1,2,..5) – коэффициенты деления делителей с переменным коэффициентом деления в каждом из колец ФАП. Коэффициенты удовлетворяют соотношениям:

где ; , - максимальное и минимальное значения коэффициента деления в i-м кольце ФАП. Тогда получаем:

Принимаем величину шага сетки fш = 2 кГц и значение эталонной частоты    кГц. Будем рассчитывать .

Чтобы обеспечить значение в соответствии с заданием, необходимо подбирать :

 

 

 

 

 

 При  этом    должно быть целым числом.

Предположим :

 

 Комбинационные составляющие порядка меньше  5 не  должны попадать в полосу пропускание полосового фильтра.

Проверка:

 

 

Следовательно:

Проверка:

 

= 659,94

= 900

должно удовлетворять неравенству:

= 400, где  – максимально возможная цифра в старшем разряде частоты выходного сигнала.

Полученное нами значение  удовлетворяет условию (900>400).

Вывод:

В результате выполнения курсового проекта была разработана структурная схема синтезатора сетки частот, рассчитаны принципиальные схемы опорного кварцевого генератора, широкополосного двухтактного усилительного каскада. Разработана соответствующая конструкторская документация: структурные, электрические принципиальные схемы и спецификации.

Список литературы

  1.  Митрофанов А. В., Полевой В. В., Сафин В.Г., Соловьев А. А. Учебное пособие. Устройства генерирования и формирования радиосигналов.


 

А также другие работы, которые могут Вас заинтересовать

41126. Загальний огляд інформаційно-пошукових правових систем 59 KB
  Навчальновиховна мета заняття: дати загальний огляд інформаційнопошукових правових систем Тип заняття: Наочність: Між предметні зв’язки: лекція таблиця інформаційнопошукових правових систем ЛІГА:ЗАКОН Кваліфікаційні вимоги до знань умінь навичок: Студенти повинні: Основні поняття інформаційнопошукових правових систем. Підведення підсумків уроку Які існують сучасні інформаційнопошукові системами Які ви знаєте види правової системи ЛігаЗакон Для чого призначена ЛігаЗакон Що знаходиться в системі ЛігаЗакон Що дуже вдало...
41127. Авторское право 79 KB
  Учения о природе авторского права Становление двух основных систем авторского права 1. В субъективном смысле авторское право – совокупность правовых норм регулирующих личные неимущественные и имущественные права принадлежащие создателям произведений науки литературы и искусства. Предмет изучаемого курса включает в себя: систему правовой охраны творческих произведений авторскими и смежными правами; принципы и основные направления государственного регулирования авторского и смежных прав в Российской Федерации; объекты и субъекты...
41128. Этапы эволюции науки и развитие регионов в мировом сообществе в XXI веке 346.5 KB
  Классический рационализм предстает как направление научной мысли отображающее особенности научного мышления характерного для классического этапа эволюции методологии науки и отличающееся изучением феноменов явлений конкретных систем и конкретного человека как внешнего наблюдателя природы общественных и социальных процессов и т. Неклассический рационализм интерпретируется как направление научной мысли отображающее особенности научного мышления характерного для неклассического этапа эволюции методологии науки и отличающееся изучением...
41129. Проекции точки 196.5 KB
  Плоскости проекции. Проекции разделяются на центральные и параллельные. Пусть заданы в пространстве точка S – центр проекции и плоскость П1 – плоскость проекции.
41130. Основные задачи в области электротехники 188.5 KB
  Определение связи между токами напряжениями параметрами заданной цепи и теми величинами которые определяют работу рассматриваемой установки например: к. падение напряжения величина тока к. Электрической цепью называется совокупность устройств предназначенных для прохождения электрического тока. Различают источники напряжения и источники тока.
41131. ПРЕДМЕТ ЛОГИСТИКИ И ФАКТОРЫ ЕЁ РАЗВИТИЯ 89.5 KB
  Понятие логистики история ее появления и развития.Факторы и уровни развития логистики.Цель задания и функции логистики.Термин «Л» до недавних пор был известен только узкому кругу специалистов, а сегодня он имеет все более широкое распространение. Основная причина этого заключается в том, что понятие «Л» начало использоваться в экономике
41132. Защита операционных систем 533.5 KB
  Обеспечение безопасности хранения данных в ОС Microsoft Технология теневого копирования данных Архивация данных Создание отказоустойчивых томов для хранения данных
41133. ПОТРЕБИТЕЛЬ В СИСТЕМЕ МАРКЕТИНГА 1.18 MB
  В результате исследования нами выделены наименованы и описаны три основных типа моделей индивидуального потребления:рациональные модели утилитарная конъюнктурная нормативная; иррациональные модели мотивационная идентификационная; смешанные модели модель неформальной экономики. особенно характерными и присущими современному российскому обществу на текущий момент являются два последних типа: 1 идентификационная модель – представлена совокупностью субмоделей описывающих выбор покупателя как многоаспектное явление когда...
41134. Особливості складання фінансової звітності за МСФЗ 112 KB
  Назначение и состав финансовой отчетности Общие требования к финансовой отчетности изложены в Концептуальной основе МСФО и МСБУ Представление финансовых отчетов. Концептуальная основа МСФО содержит: цель финансовых отчетов; качественные характеристики информации приведенной в финансовых отчетах; определение и порядок признания элементов финансовых отчетов; концепции сохранения капитала. К пользователям финансовых отчетов Users of Finncil Sttements относятся существующие и потенциальные инвесторы работники кредиторы клиенты...