49282

Расчет монолитного железобетонного перекрытия многоэтажного производственного здания

Курсовая

Архитектура, проектирование и строительство

Расчётные пролёты плиты. Изгибающие моменты на 1м ширины плиты. Расчёт плиты на прочность по нормальным сечениям. Расчёт арматуры на 1 м ширины плиты 5 2.

Русский

2013-12-24

541.55 KB

73 чел.

Минобрнауки РФ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Нижегородский государственный архитектурно-строительный университет»

(ННГАСУ)

Кафедра железобетонных и каменных конструкций

Пояснительная записка к курсовой работе на тему:

«Расчет монолитного железобетонного перекрытия многоэтажного

производственного здания».

Выполнил: студент 3 курса гр. 154                               Бочкарев А.В.

Руководитель                                                                  Макаров А. Д.

Н.Новгород – 2012

Содержание

1. Плита перекрытия. 3

1.1. Расчётные пролёты плиты. 3

1.2. Расчётные нагрузки. 4

1.3. Изгибающие моменты (на 1м ширины плиты). 4

1.4. Расчёт плиты на прочность по нормальным сечениям. 4

Расчёт арматуры (на 1 м ширины плиты) 5

2. Расчет второстепенной балки монолитного железобетонного междуэтажного ребристого перекрытия на прочность. 6

2.1. Расчётные пролёты второстепенной балки. 6

2.2. Расчётные нагрузки. 6

2.3. Расчётные изгибающие моменты. 7

2.4. Расчётные поперечные силы по граням опор. 8

2.5. Расчёт балки на прочность по нормальным сечениям. 8

Расчёт арматуры. 8

2.6. Расчет балки на прочность по наклонным сечениям 10

2.7. Определение длины приопорных участков. 13

  1.  Плита перекрытия.

Требуется рассчитать на прочность плиту монолитного железобетонного междуэтажного ребристого перекрытия при разбивке балочной клетки по рис. 1 при следующих исходных данных.

Сетка колонн . Коэффициент надёжности по назначению . Нормативная временная нагрузка на перекрытии  считается длительной. Бетон тяжелый класса В15. Относительная влажность воздуха помещений не выше 75%. Армирование плиты раздельное, кусками рулонных сеток с рабочей поперечной арматурой.

По рис. 2  . Отношения сторон поля плиты (рис. 2): , т.е. плита является балочной.

Расчётное сопротивление тяжёлого бетона класса В15 осевому сжатию при расчёте по предельным состояниям первой группы (на прочность)  с учётом коэффициента условий работы , т.к. в  присутствует нагрузка непродолжительного действия.



Предварительно назначаем:

толщину плиты ;

размеры сечения второстепенной балки:

высоту – , принимаем ;

ширину – , принимаем .

  1.  Расчётные пролёты плиты (рис.3).
  2.  Крайние пролёты: ;
  3.  Средние пролёты: .

  1.  Расчётные нагрузки.
  2.  Постоянная (с ):
  3.  собственный вес плиты ;
  4.  вес пола и перегородок .

Итого постоянная нагрузка: .

  1.  Временная нагрузка (с ): .
  2.  Погонная расчётная нагрузка для полосы плиты шириной в 1 м при учёте :

.

  1.  Изгибающие моменты (на 1м ширины плиты).
  2.  В крайних пролётах:

.

  1.  На вторых с края опорах В:

.

  1.  В средних пролётах: .
  2.  На средних опорах:.

(В средних пролётах и на средних опорах величины моментов определены без учёта влияния распора).



  1.  Расчётные нагрузки.
  2.  Постоянная (с ):
  3.  собственный вес плиты ;
  4.  вес пола и перегородок .

Итого постоянная нагрузка: .

  1.  Временная нагрузка (с ): .
  2.  Погонная расчётная нагрузка для полосы плиты шириной в 1 м при учёте :

.

  1.  Изгибающие моменты (на 1м ширины плиты).
  2.  В крайних пролётах:

.

  1.  На вторых с края опорах В:

.

  1.  В средних пролётах: .
  2.  На средних опорах:.

(В средних пролётах и на средних опорах величины моментов определены без учёта влияния распора).

  1.  Расчёт плиты на прочность по нормальным сечениям.

Определение толщины плиты производится по ; . Задаваясь значением .

,

. Принимаем .


Расчёт арматуры (на 1 м ширины плиты)

  1.  Крайние пролёты.

; .

Принимаем , тогда .

,

,

.

Принята сетка: ;

б) Вторые с края опоры В:

; ; ; .

,

,

.

Принята сетка: ; .

в) Средние пролёты и средние опоры.

; ; ; .

,

,

.

Принята сетка: ;

г) Рабочая арматура верхней сетки на крайней опоре А.

.

Принята сетка: ; .

  1.  Расчет второстепенной балки монолитного железобетонного междуэтажного ребристого перекрытия на прочность.

Коэффициент снижения временной нагрузки для второстепенной балки .

Продольная и поперечная арматура пролётных сварных каркасов – класса А300. Опоры балки армируются гнутыми сварными сетками с рабочей арматурой также класса A300. Класс поперечной арматуры подбирается из условия экономичности (по расходу материала).

Расчётное сопротивление тяжёлого бетона класса В15осевому сжатию с учётом коэффициента условий работы  равно , .

Предварительно принятые размеры сечения второстепенной балки: ; ; шаг балок в осях ; толщина плиты . Назначаем размеры сечения главной балки:

высоту - ,

принимаем ,

ширину - , принимаем .

  1.  Расчётные пролёты второстепенной балки (рис.4). 

.

  1.  Расчётные нагрузки.

а) Постоянная (при  и ).

Расчётную нагрузку  от собственного веса плиты и веса пола и перегородок принимаем по подсчётам, выполненным в разделе 1:

.

Расчётная погонная нагрузка от собственного веса ребра балки, расположенного ниже плиты:

.

Расчётная постоянная нагрузка с учётом коэффициента надёжности по ответственности  равна:

.

б) Временная расчетная погонная нагрузка (при ;  и ) составит:

.

в) Полная расчётная нагрузка на балку:

.

  1.  Расчётные изгибающие моменты (рис.4).

В крайнем пролёте: .
На второй с края опоре
B: .

В средних пролётах:

  1.  положительный момент .
  2.  отрицательный момент между точками 6 и 7

.

Значения коэффициента β при p/g = 1,6 по таблице 4:

  1.  для точки 6: ;
  2.  для точки 7: .

Для определения момента :

.

.

На средних опорах C: .

  1.  Расчётные поперечные силы по граням опор.

На крайней опоре A:

.
На второй с края опоре
B слева:

.
На опоре В справа и на всех средних опорах С:

.


  1.  Расчёт балки на прочность по нормальным сечениям.

Высоту сечения балки определяем по , принимая ширину ребра её  и задаваясь .

.

Значение  принимаем равным

Тогда .

Принимаем . Отношение  лежит в допустимых пределах  и соответствует предварительно принятым размерам.

Расчёт арматуры.

  1.  Крайний пролёт.

; ; сечение тавровое (полка на стороне сжатой части сечения); ; .

.

Расчётная ширина полки: ;

.

Принимаем в расчете .

;

;

, т.е. нейтральная ось действительно находится в полке.

.

По таблице приложения A принимаем арматуру:  с . Тогда,  – соответствует предварительному значению.

  1.  Вторая с края опора В:

; ; сечение прямоугольное, шириной ; ; .

;

;

;

Принято:  с .

  1.  Средние пролёты.
    На положительный момент .

; сечение тавровое (полка на стороне сжатой части сечения); ; .

Расчётная ширина полки: ;

.

Принимаем в расчёте .

;

;

, т.е. нейтральная ось действительно находится в полке.

;

Принято:  с .

На отрицательный момент .

; сечение прямоугольное , ; .

;

;

;

Принято:  с .

  1.  Средние опоры C.

 сечение прямоугольное; ширина , ;  (полка в растянутой зоне).

;

;

;

Принято: с

  1.  Крайняя опора A:
    Требуемая площадь рабочей арматуры в гнутой опорной сетке:

.

Принято:  с

  1.  Расчет балки на прочность по наклонным сечениям

Крайний пролет:

Расчет на  :

Проверка прочности по наклонной  сжатой  полосе:

,

т.е. прочность наклонной сжатой полосы обеспечена.

Проверка прочности наклонных сечений.

Предварительно принимаем в качестве поперечной арматуры  с шагом .

Поскольку , т.е. условие  соблюдается, хомуты полностью учитываются в расчете, и  определяется по формуле:

Определение длины проекции самого невыгодного наклонного сечения C: .

Поскольку , значение  определяется по формуле:

.

Т.к. , принимаем .

Принимаем .

Тогда

;

;

, т.е. прочность наклонных сечений у опоры B слева обеспечена.

Проверка требования:

.

Средний пролёт

Расчёт на

Проверка прочности по наклонной сжатой полосе

,

т.е. прочность по наклонной сжатой полосе обеспечена.

Проверка прочности наклонных сечений.

Предварительно принимаем в качестве поперечной арматуры  с шагом .

.

Поскольку , т.е. условие  соблюдается, хомуты полностью учитываются в расчете, и  определяется по формуле:
.

Поскольку , значение C определяется по формуле:

. Принимаем .

Принимаем .

Тогда

;

;

, т.е. прочность наклонных сечений у опоры B слева обеспечена.

Проверка требования:

,

т.е. прочность наклонных сечений у опоры B справа обеспечена.

  Расчёт на  не требуется, т.к.  шаг  принимаем 150 (мм) из-за конструктивных требований:

.

  1.  Определение длины приопорных участков.

В средней части пролёта балки шаг хомутов может быть увеличен до значения:

;

;

;

Так как

Длина приопорных участков определяется по формуле:

,

  1.  Где для крайнего пролёта:

.

  1.  У опоры А 

.

  1.  У опоры В слева 

.

  1.  Средний пролёт 

.

Так как

;

.

Длины приопорных участков принимаются большими из двух полученных значений, т.е. соответственно 1,23м., 2,44м., 1,83м.


 

А также другие работы, которые могут Вас заинтересовать

23088. Реєстрація спектрів випромінювання 167 KB
  Вимірювання форми імпульсу випромінювання. Реєстрація спектрів випромінювання. Терміни та визначення Спектр випромінювання абсолютно чорного тіла.
23089. Фотоелектронний помножувач 310 KB
  Опис спектрофотометра СФ5 У цій лабораторній роботі Ви познайомитеся з пристроєм принципом дії характеристиками фотоелектронного помножувача ФЕП особливостями методики вимірювання цих характеристик а також способами реєстрації слабких світлових потоків за допомогою ФЕП. Схема включення ФЕП показана на мал. Після nго динода електрони збираються на аноді ФЕП. Якщо струм катода ic то анодний струм ФЕП 1 де темновой струм mго динода.
23090. ФОТОДІОДИ 172 KB
  У рівноважному стані рівні Фермі обох напівпровідників вирівнюються а енергетичні зони утворять потенційний бар'єр для основних носіїв мал. Мал. При прикладанні до pnпереходу зовнішньої напруги в прямій полярності тобто до pобласті та до nобласті бар'єр знижується мал. При зворотному зміщенні pnпереходу зовнішнє поле складається з внутрішнім підвищуючи потенційний бар'єр мал.
23091. ЕЛЕКТРОМЕТР 319.5 KB
  Електрометричний вимірювач струму. Опис спектрофотометра СФ5 Ця лабораторна робота знайомить із принципами вимірювання і будовою електрометричних вимірювачів струму їхньою конструкцією і способами визначення основних характеристик що дозволяють використовувати такі прилади разом з фотоелектронними помножувачами ФЕП і фотодіодами ФД для реєстрації слабких потоків випромінювання. За допомогою електрометричних вимірювачів реалізується метод виміру постійного струму застосовуваний для таких приймачів випромінювання що мають малий рівень...
23092. Рівняння максвела як узагальнення експериментальних фактів 70.5 KB
  Рівняння максвела як узагальнення експериментальних фактів. Рівняння Максвела сформульовані на основі узагальнення емпіричних законів електричних та магнітних явищ. Ці рівняння звязують величини що характеризують електромагнітне поле з його джерелами та з розподілами в просторі електричних зарядів та струмів. Перше рівняння максвела є узагальненням емпіричного закону БіоСавара.
23093. Магнітні властивості речовини 36 KB
  Пара та діа магнетиками називаються речовини які за відсутності магнітного поля завжди не намагнічені і які характеризуються однозначною залежністю між вектором намагнічування I и напруженістю статичного магнітного поля Н. Зокрема у слабких магнітних полях ця залежність лінійна: причому для парамагнетиків χ 0 а для діамагнетиків χ 0. Феромагнетиками називаються тверді тіла які можуть мати спонтанну намагніченість тобто намагнічені вже при відсутності магнітного поля. Магнітна сприйнятливість феромагнетику є функцією напруженості...
23094. Рівняння для електромагнітних потенціалів, їх розв’язок у вигляді запізнювального потенціалу 91.5 KB
  Рівняння для електромагнітних потенціалів їх розвязок у вигляді запізнювального потенціалу. Система рння Максвелла: Перше рівняння М. Підставивши у 3 рння М. Використовуючи те що потенціали вибираються не однозначно рння не зміняться якщо зробити заміну це калібрувальна інваріантність.
23095. Fast Ethernet и 100VG-AnyLAN как развитие технологии Ethernet 151 KB
  В результате поисков и исследований специалисты разделились на два лагеря, что в конце концов привело к появлению двух новых технологий — Fast Ethernet и 100VG-AnyLAN. Они отличаются степенью преемственности с классическим Ethernet.
23096. Розсіяння електромагнітних хвиль зарядами. Формула Томсона 76.5 KB
  Розсіяння електромагнітних хвиль зарядами. Цей рух в свою чергу супроводжується випромінюванням в усі боки: відбувається розсіяння початкової хвилі. Нехай енергія яка випромінюється системою в тілесний кут в 1с при тому що на неї падає хвиля з вектором Пойнтінга Тоді переріз розсіяння риска означає усереднення по часу Розглянемо розсіяння що проводиться одним нерухомим зарядом вільним зарядом. отримана зарядом швидкість припускається малою 2 1 в 2: одиничний вектор в напрямку розсіяння.