49308

Усилительное устройство

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Усилительное устройство - устройство, усиливающее мощность сигнала. С точки зрения схемотехнического построения усилители бывают транзисторные и на базе интегральных микросхем (ИМС). Преимуществами усилителей на базе ИМС являются: меньшие размеры, меньшее потребление и более высокое качество.

Русский

2014-01-15

969.96 KB

41 чел.

Содержание

Введение……………………………………………………………………. 3

1. Предварительный расчет усилителя………………………………….. 4

2. Расчет оконечного (четвертого) каскада……………………………... 5

3. Расчет третьего каскада……………………………………………….. 10

4. Расчет второго каскада………………………………………………....16

5. Расчет первого каскада…………………………………………………22

6. Принципиальная схема усилителя на транзисторах………………....28

7. Расчет усилителя на базе ИМС………………………………………...28

8. Входные и выходные характеристики транзисторов………………...31

Основные выводы ………………………………………………………… 33

Список использованной литературы……………………………………. 34


Введение

Усилительное устройство  - устройство, усиливающее мощность сигнала. С точки зрения схемотехнического построения усилители бывают транзисторные и на базе интегральных микросхем (ИМС). Преимуществами усилителей на базе ИМС являются: меньшие размеры, меньшее потребление и более высокое качество. Однако транзисторные усилители также широко распространены, поскольку некоторые задачи усиления пока нельзя решить использованием ИМС.

Усилители можно разделить на различные группы по следующим признакам:

  1.  по виду используемого усилительного элемента — ламповые, транзисторные усилители, на туннельных или параметрических диодах, на микросхемах и т.д.;
  2.  по диапазону усиливаемых частот — усилители постоянного тока (УПТ), низкой частоты (УНЧ), радио- или промежуточной частоты (УРЧ, УПЧ) и сверхвысокой частоты (СВЧ-усилители);
  3.  по ширине полосы усиливаемых частот — узкополосные, широкополосные усилители;
  4.  по характеру усиливаемого сигнала — усилители непрерывных и импульсных сигналов;
  5.  по усиливаемой электрической величине — усилители напряжения, тока, мощности;
  6.  по типу нагрузки — резистивные (апериодические), резонансные (избирательные) усилители.

В данной курсовой работе рассчитывается широкополосный усилитель, работающий в полосе частот 500 Гц .. 1 МГц на нагрузку  Rн=150 Ом. В пояснительной записке рассчитаны варианты усилителя, выполненные на транзисторах и на  базе современных операционных усилителей.
1. Предварительный расчет усилителя.

Усилительное устройство можно условно разделить на каскады: входной каскад, каскады предварительного усиления, обеспечивающее основное усиление, и оконечный каскад.

В зависимости от величины внутреннего сопротивления источника сигнала R1 входной каскад выбирают по схеме общий эмиттер (ОЭ) при R1=3…10 кОм или по схеме с общим коллектором (ОК) при R1>10 кОм.

Оконечный каскад при сопротивлении нагрузки >300 Ом выбирают по схеме  ОЭ, при меньших значениях – по схеме ОК.

Анализируя исходные данные, можно предположить следующее: входной каскад выберем по схеме ОЭ, т.к. внутреннее сопротивление источника сигнала R1=10 кОм. Выходной каскад  выберем по схеме ОК (эмиттерный повторитель), так как сопротивление нагрузки Rн=150 Ом.

Для определения числа промежуточных каскадов определим коэффициент усиления промежуточных каскадов:


                                     

Коэффициент ослабления сигнала во входной цепи (т.е. при передаче его от источника сигнала к входу первого каскада усиления) принимают равным от 0,6…0,9, причем меньшим значениям соответствуют большие значения R1. Для определенности возьмем 0,9. Получаем 4 каскада. Рассчитаем коэффициент усиления:      

                   
                                  

    Определим частотные искажения  каждого каскада путем распределения заданных частотных искажений.

                                                              

                                                              

Все коэффициенты частотных искажений получились равными 0,997 и 0.997 , которые на практике обеспечить ни один транзистор не сможет, поэтому придется ввести коррекцию в одном из каскадов.

                   

                   

Таким образом, структурная схема усилителя будет выглядеть следующим образом:

Рис.1.Структурная схема усилителя

2. Расчет 4-го каскада (эммитерного повторителя).

Выбор транзистора:

Находим минимальную частоту для всех транзисторов, используемых в данном усилителе:

Гц.

Находим мощность транзистора, который можно использовать в этом каскаде:

Вт

 Вт.

В качестве оконечного каскада используется эммитерный повторитель. В роли активного элемента используется биполярный транзистор, модели КТ817 (N-P-N типа).

Принципиальная схема 4-го каскада.

Справочные данные транзистора:

Сопротивление в цепи эмиттера находим из выходной вольт – амперной характеристики транзистора.

Ом

А

Округлим значение до ближайшего стандартизованного:  =39 Ом

Параметры рабочей точки:

Усилитель работает в режиме класса “A”. В этом режиме р.т. не заходит в не линейный участок. Так как усилитель работает в линейном режиме, то мы можем описывать оконечный каскад системой Y- параметров.

По входным и выходным вольт - амперным  характеристикам находим

 

Находим проводимости:

Рассмотрим область средних частот:

Эквивалентная схема 4-го каскада в области средних частот.

В области средних частот коэффициент усиления не зависит от частоты.

где  S – крутизна транзистора

      YЭ - проводимость в цепи эмиттера

Yi =Y22 - выходная проводимость  

Рассмотрим область низких частот:

В области низких частот сказывается СР. Следовательно, ей мы пренебречь не можем.

Эквивалентная схема 4-го каскада в области низких частот

Номинал: =43 мкФ

Рассмотрим область высоких частот:

В области высоких частот сказывается С0. Следовательно, ей мы пренебречь не можем.

Эквивалентная схема 4-го каскада в области высоких частот. 

= 0,99

Рассчитаем схему температурной стабилизации, т.е. резисторы R1 и R2. Выберем допустимое изменение тока коллектора

 А

Изменение обратного тока коллектора:

,      где          ,

- максимальная температура окружающей среды.

А

Коэффициент нестабильности, который должна обеспечивать схема температурной стабилизации

.

Рассчитаем сопротивление делителя:

,

где .

Ом.

Расчёт сопротивлений делителя R1 и R2:

Ом

Ом

Номинал R1 =300 Ом, номинал R2=430 Ом.

Пересчитаем сопротивление делителя с учётом реальных номиналов сопротивлений:

Ом.

Найдем входное сопротивление транзистора:

Определяем напряжение на входе каскада:                   

3. Расчет 3-го каскада

Принципиальная схема 3-го каскада

Находим мощность транзистора, который можно использовать в этом каскаде. 

-входное сопротивление 3-го каскада.

 Вт

 Вт.

В качестве активного элемента в 3-ем каскаде используем транзистор КТ815 (N-P-N   типа):

Параметры рабочей точки:

45,215

Округлим значение до ближайшего стандартизованного значения:  

=10 Ом

=43 Ом

Усилитель работает в режиме класса “A” , следовательно его можно описать системой Y- параметров.

По входным и выходным вольт - амперным  характеристикам находим:

Находим проводимости:

Рассчитаем схему температурной стабилизации, т.е. резисторы R1 и R2. Выберем допустимое изменение тока коллектора

,

 А

Изменение обратного тока коллектора:

,      где          ,

- максимальная температура окружающей среды.

А

Коэффициент нестабильности, который должна обеспечивать схема температурной стабилизации

.

Рассчитаем сопротивление делителя:

,

где .

Ом.

Расчёт сопротивлений делителя R1 и R2:

Ом

Ом

Номинал R1 =82Ом

Номинал R2=448 Ом

Пересчитаем сопротивление делителя с учётом реальных номиналов сопротивлений:

Ом.

Найдем входное сопротивление каскада:

Начинаем рассматривать каскад на различных частотах:

Эквивалентная схема 3-го каскада.

Эквивалентная схема 3-го каскада.

Рассмотрим область средних частот.

Эквивалентная схема 3-го каскада в области средних частот.

В области средних частот коэффициент усиления не зависит от частоты.

где  S – крутизна транзистора

      YК -  проводимость в цепи коллектора

                        Yi =Y22  - выходная проводимость  

                   - проводимость предыдущего каскада.

Рассмотрим область низких частот:

В области низких частот сказывается СР. Следовательно, ей мы пренебречь не можем.

Эквивалентная схема 3-го каскада в области низких частот.

Номинал = 910  мкФ

Номинал = 33  мкФ

Рассмотрим область высоких частот.

                       В области высоких частот сказывается С0. Следовательно, ей мы пренебречь не можем.

Эквивалентная схема 3-го каскада в области высоких частот.

Определяем напряжение на входе каскада:

В

4. Расчет 2-го каскада

Принципиальная схема 2-го каскада

Находим мощность транзистора, который можно использовать в этом каскаде.

-входное сопротивление 2-го каскада.

мВт

 мВт.

Корпусных транзисторов рассеивающих такую малую мощность нет, поэтому  в качестве активного элемента в 2-м каскаде используем транзистор КТ301 (N-P-N   типа).

Параметры рабочей точки:

180,45

Округлим значение до ближайшего стандартизованного значения:

=43 Ом

=180 Ом

Усилитель работает в режиме класса “A” , следовательно его можно описать               системой Y- параметров.

По входным и выходным вольт - амперным  характеристикам находим:

Находим проводимости:

Рассчитаем схему температурной стабилизации, т.е. резисторы R1 и R2. Выберем допустимое изменение тока коллектора

,

Изменение обратного тока коллектора:

,      где          ,

- максимальная температура окружающей среды.

А

Коэффициент нестабильности, который должна обеспечивать схема температурной стабилизации

.

Рассчитаем сопротивление делителя:

,

где .

Ом.

Расчёт сопротивлений делителя R1 и R2:

 Ом

Номинал R1 =390 Ом

Номинал R2=2,4 кОм

Пересчитаем сопротивление делителя с учётом реальных номиналов сопротивлений:

Ом.

Найдем входное сопротивление каскада:


Начинаем рассматривать каскад на различных частотах:

Рис 21. Эквивалентная схема 2-го каскада.

Рис 22. Эквивалентная схема 2-го каскада.

Рассмотрим область средних частот.

Рис 23. Эквивалентная схема 2-го каскада в области средних частот.

В области средних частот коэффициент усиления не зависит от частоты.

где  S – крутизна транзистора

YК - проводимость в цепи коллектора

Yi =Y22 - выходная проводимость

- проводимость предыдущего каскада.

Рассмотрим область низких частот:

В области низких частот сказывается СР. Следовательно, ей мы пренебречь не можем.

Эквивалентная схема 2-го каскада в области низких частот.

 Номинал = 200 мкФ

Номинал = 30 мкФ

Рассмотрим область высоких частот.

             В области высоких частот сказывается С0. Следовательно, ей мы пренебречь не можем.

Эквивалентная схема 2-го каскада в области высоких частот.

Определяем напряжение на входе каскада:

В

5. Расчет 1-го каскада

Принципиальная схема 1-го каскада

Находим мощность транзистора, который можно использовать в этом каскаде.

-входное сопротивление 1-го каскада.

 мкВт

 мкВт.

Корпусных транзисторов рассеивающих такую малую мощность нет, поэтому  в качестве активного элемента в 1-м каскаде используем транзистор КТ302 (N-P-N   типа).


Параметры рабочей точки:

320,2

Округлим значение до ближайшего стандартизованного значения:

=39 Ом

=164 Ом

Усилитель работает в режиме класса “A” , следовательно его можно описать системой Y- параметров.

По входным и выходным вольт - амперным  характеристикам находим:

Находим проводимости:

Рассчитаем схему температурной стабилизации, т.е. резисторы R1 и R2. Выберем допустимое изменение тока коллектора

,

 А

Изменение обратного тока коллектора:

,      где          ,

- максимальная температура окружающей среды.

А

Коэффициент нестабильности, который должна обеспечивать схема температурной стабилизации

Рассчитаем сопротивление делителя:

,

где .

Ом.

Расчёт сопротивлений делителя R1 и R2:

Ом

Ом

Номинал R1 =56 кОм

Номинал R2=62 кОм

Пересчитаем сопротивление делителя с учётом реальных номиналов сопротивлений:

Ом.

Найдем входное сопротивление каскада:


Начинаем рассматривать каскад на различных частотах:

Эквивалентная схема 1-го каскада.

Эквивалентная схема 1-го каскада.

Рассмотрим область средних частот.

Эквивалентная схема 1-го каскада в области средних частот.

В области средних частот коэффициент усиления не зависит от частоты.

где  S – крутизна транзистора

YК -  проводимость в цепи коллектора

Yi =Y22  - выходная проводимость

- проводимость предыдущего каскада.

Рассмотрим область низких частот:

В области низких частот сказывается СР. Следовательно, ей мы пренебречь не можем.

Эквивалентная схема 1-го каскада в области низких частот.

Номинал =270 мкФ

Номинал = 51 мкФ

Рассмотрим область высоких частот.

В области высоких частот сказывается С0. Следовательно, ей мы пренебречь не можем.

Эквивалентная схема 1-го каскада в области высоких частот.

Определяем напряжение на входе каскада:

6. Принципиальная схема усилителя на транзисторах

7. Расчёт усилителя на ИМС.

Рассчитаем усилитель, построенный на интегральных микросхемах. Определим коэффициент усиления всего усилителя с учётом запаса.

Выберем операционный усилитель 140УД10

Основные характеристики микросхемы 140УД10:

Входное сопротивление                                              Rвх = 1 МОм

Выходное напряжение                                                Uвых = 10 В

Напряжение смещения                                                Uсм = 8 мВ

Ток смещения                                                                 Iсм = 2мкА

Напряжение питания (однополярное)                     Епит = 5…18 В

Потребляемый ток                                                         Iпот = 8мА

Граничная частота                                                          f = 5 МГц

Для построения каскадов используем неинвертирующую схему включения ОУ

Расчёт 1-го каскада:

 Ом

 Ом

 Ф

 Ф

Номиналы:

R1=91 кОм     R2=5.1 кОм

С1=130 нФ          C2=3,9 нФ

Расчёт 2-го каскада:

 Ом

 Ом

 Ф

 Ф

Номиналы:

R1=180 кОм     R2=5.1 кОм

С1=68 нФ          C2=1.8 нФ

Принципиальная схема усилителя на ИМС:

Входные и выходные характеристики транзисторов

  1.  КТ817

  1.  КТ815

  1.  КТ 815

  1.  КТ301

Основные выводы.

В данной курсовой работе мы рассчитали транзисторный и микросхемный вариант усилителя гармонических сигналов. Разработали структурную схему, рассчитали оконечный, предоконечный, первый и второй каскады усилительного устройства. Выбрали подходящие транзисторы и привели их входные и выходные характеристики. Также мы рассчитали схему усилителя на базе ИМС.

В настоящее время трудно определить область техники, где бы ни находили применение усилители электрических сигналов. Это объясняется, как правило, несоответствием параметров электрических сигналов, получаемых при первичном преобразовании различных неэлектрических физических величин в электрические, параметрам, необходимым для нормальной работы большинства исполнительных устройств. Усилителем называют устройство, предназначенное для усиления входного электрического сигнала по напряжению, току или мощности за счет преобразования энергии источника питания в энергию выходного сигнала. При построении усилительных устройств наибольшее распространение получили каскады на биполярных и полевых транзисторах, использующие соответственно схемы включения транзистора с общим эмиттером и общим истоком. Реже используются схемы включения с общим коллектором и общим стоком. Схемы включения с общей базой или общим затвором находят применение только в узком классе устройств. Усилительное устройство условно можно разделить на каскады: входной каскад, каскады предварительного усиления и выходной каскад.

Список использованной литературы

1. И.Г. Мамонкин, Усилительные устройства. Учебное пособие для ВУЗов. Изд. 2-е, М., "Связь", 1977 г.

2. Г.В. Войшвилло, Усилительные устройства, М., "Радио и связь", 1983 г.

3. К.М. Брежнева, Е.И. Гантман, Транзисторы для аппаратуры широкого применения. Справочник, М., 1985 г.

4. А. Хоровиц, П. Хилл, Искусство схемотехники. Том 2, М., "Иностранная литература", 1992 г.

5. О.П. Григорьев, Диоды. Справочник, М., "Радио и связь", 1990 г.

6. Motorola 2004 Data Book. Volume I. U.S.A, Sunnyvale: Motorola Inc, 2003 г.


 

А также другие работы, которые могут Вас заинтересовать

23650. Поиск списка реакций химического синтеза 145.5 KB
  Список элементарных химических реакций типа a b  i можно выразить в виде фактовпредикатов: rxn i[ab]. В целях упрощения представим в виде исходных фактов только эти необходимые реакции: rxn w [j r]. rxn j [c d]. rxn r [k l].
23651. Поиск пути в порождаемом пространстве состояний (на примере игры «восьмёрка») 97.5 KB
  1й список исходное состояние 2й список состояние после одноходовой допустимой перестановки. попадания в пройденные вершины графа необходимо вести список пройденных состояний. Здесь Yсписок характеризующий начальное состояние; Xs список характеризующий заданное конечное состояние. Третий аргумент предиката trans1 список пройденных состояний список списков.
23652. Экспертная система по составлению учебных расписаний 59 KB
  При составлении расписаний лучше исходить не из заданной цели к тому же трудно сформулировать какое расписание лучше а из возможностей комбинирования учебных дисциплин. Далее можно попытаться оценить относительную ценность полученных расписаний их уже будет не так много с точки зрения быстрейшего и полного освоения дисциплин специализации в необходимой пропорции с факультативными и общеобразовательными курсами. Представим что студенту желающему специализироваться в конкретной области предоставлена возможность самостоятельного...
23653. Логическое программирование задачи поиска пути на конечных графах пространства состояний 680 KB
  Рассмотрим ориентированный ациклический граф: Наличие ориентированной связи двух соседних вершин отображается в программе в виде фактовпредикатов edgex y. edgeac. edgecf. edgefh.
23654. Разработка графического интерфейса и базы данных каскадной системы регулирования температуры, расхода и концентрации в процессе ректификации стирола 3.53 MB
  Листинг программы unit Unit1; interface uses Windows Messages SysUtils Variants Classes Graphics Controls Forms Dialogs Grids ComCtrls ExtCtrls DBCtrls DBGrids StdCtrls Buttons DB DBTables ImgList ToolWin Mask TeEngine Series TeeProcs Chart DbChart Animate GIFCtrl; type TForm1 = classTForm PageControl1: TPageControl; TabSheet1: TTabSheet; TabSheet3: TTabSheet; PageControl2: TPageControl; TabSheet5: TTabSheet; DBNavigator1: TDBNavigator; DBGrid1: TDBGrid; BitBtn1: TBitBtn;...
23655. Управление качеством электронных средств 423 KB
  Непрерывной случайной величиной СВ называется величина которая при испытании может принять любое значение из заданного диапазона. Любое распределение характеризуется определенными характеристиками важнейшими из которых являются среднее значение и дисперсия. Несмещенной является оценка среднее значение которой совпадает со средним значением генерал ной совокупности. Здесь оценка истинное значение характеристики оператор усреднения.
23656. Семантические сети 170 KB
  Семантические сети Семантической сетью является структура данных имеющая определенный смысл как сеть. Стандартного определения семантической сети не существует но обычно под ней подразумевают следующее: Семантическая сеть это система знаний имеющая определенный смысл в виде целостного образа сети узлы которой соответствуют понятиям и объектам а дуги отношениям между объектами. Следовательно всевозможные сети можно рассматривать как сети входящие в состав семантической сети. Поэтому в контексте знакомства с СОЗ семантические сети...
23657. Продукционные модели. ЕСЛИ - ТО (явление - реакция) 166 KB
  Эти две отличительные черты и определили широкое распространение методов представления знаний правилами. Программные средства оперирующие со знаниями представленными правилами получили название продукционных систем или систем продукции и впервые были предложены Постом в 1941 году. Общим для систем продукции является то что они состоят из трех элементов: Набор правил используемых как БЗ его еще называют базой правил; Рабочая память где хранятся предпосылки касающиеся отдельных задач а также результаты выводов получаемых на основе...
23658. Представление знаний с применением фреймов 143.5 KB
  Понятие фрейма и слота В сложных семантических сетях включающих множество понятий процесс обновления узлов и контроль связей между ними становится затруднительным. В каждом узле понятия определяются набором атрибутов и их значениями которые содержатся в слотах фрейма. Слот это атрибут связанный с узлом в системе основанной на фреймах. Слот является составляющей фрейма.