49618

Расчет механизмов привода растворонасоса

Курсовая

Производство и промышленные технологии

Выбираем для изготовления колеса и шестерни сталь марки 40Х. Дополнительно применяем улучшение получая твердость 235…262 HB для колеса и 269…302 HB для шестерни.

Русский

2014-01-04

448.1 KB

5 чел.

Томский государственный архитектурно-строительный университет

Кафедра «Прикладная механика и материаловедение»

Курсовой проект по дисциплине «Детали машин»

Тема: «Расчет механизмов привода растворонасоса»

Пояснительная записка

РЦО 125.00.00 РПЗ

Студент: Худых К.А.

Группы:348/3

Руководитель проекта: Никифоров А.А.                                                               

Томск 2011 г.

ТГАСУ, МФ, каф. ПМиМ,

Литера

Лист

Листов

Изм

Лист

№ докум.

Подпись

Дата

Проверил

Разраб.

Н.контр.

РЦО 125.00.00 ПЗ

Редуктор цилиндрический

одноступенчатый


Изм.

Лист

№ докум.

Подпись

Дата

Лист

4

РЦО 125.00.00 ПЗ

Введение

В соответствии с техническим заданием на курсовое проектирование разработана конструкция привода растворонасоса. Пояснительная записка содержит 30 с., 2 рисунка, графическая часть 2л.

Разработанный редуктор имеет конструкцию, обеспечивающую высокую надёжность и простоту монтажа и обслуживания.

Все элементы привода выбраны с небольшим запасом, что обеспечивает повышенную надёжность в случае непредвиденных пиковых нагрузок связанных с областью применения привода.


Изм.

Лист

№ докум.

Подпись

Дата

Лист

4

РЦО 125.00.00 ПЗ

Содержание

                                                                                                                      С.

Техническое задание …………………………….…………………….… 2

Введение ……………………………………………….…………….…… 4

1. Выбор электродвигателя и общий расчёт редуктора ……………….. 5

1.1. Выбор электродвигателя ………………………………………… 5

1.2. Уточнение передаточных чисел привода ………………………. 5

1.3. Определение вращающих моментов на валах привода ……….. 6

2. Расчёт зубчатых передач ……………………………………………… 8

2.1. Выбор твёрдости, термической обработки и материала колёс …8

2.2 Определим допускаемые контактные напряжения .…………...… 8

2.3. Определим допускаемые напряжения изгиба .………………......10

2.4 Расчёт цилиндрической зубчатой передачи .…………..………... 11

2.5 Расчёт цилиндрической зубчатой передачи (1-ая ступень)………17

3. Разработка эскизного проекта ……………………………..……….…  21

4. Расчёт валов.…………………………………………………………..... 23

4.1 Рассчитываем быстроходный вал на статическую прочность…...23

4.2. Рассчитываем тихоходный вал на статическую прочность……....26

5. Расчёт соединений ….………………………………………….………. 30

Список использованных источников .………………………….………... 31


Изм.

Лист

№ докум.

Подпись

Дата

Лист

5

РЦО 125.00.00 ПЗ

1. Выбор электродвигателя и общий расчёт редуктора

1.1. Выбор электродвигателя

Для выбора электродвигателя определяем требуемую его мощность и частоту вращения.

Требуемая мощность (кВт) электродвигателя привода определяем по формуле:

где  Рв - потребляемая мощность измельчителя,

Здесь 1,2,3,муфты,подш - КПД отдельных звеньев кинематической цепи, значения которых принимаем по табл. 1.1. [1, с.6]

По табл. 24.9. [1, с.417] подбираем электродвигатель. Наиболее подходящим является электродвигатель АИР 112М4/1432 серии обладающий следую

Изм.

Лист

№ докум.

Подпись

Дата

Лист

6

РЦО 125.00.00 ПЗ

щими характеристиками: мощность Р=5,5 кВт, синхронная частота n=1432 мин-1.

1.2. Уточнение передаточных чисел привода

Определяем общее передаточное отношение привода по формуле:

Тогда

Находим передаточное число редуктора:

Тогда

Разбиваем на ступени

Принемаем  

Уточняем передаточное отношение открытой передачи(цепной):

1.3. Определение вращающих моментов на валах привода

Частота вращения выходного вала редуктора n2=nв, так как в заданной схеме отсутствует ремённая или цепная передача. То есть n2=363мин-1 .

Частота вращения входного вала редуктора n1 определяем по формуле:

Изм.

Лист

№ докум.

Подпись

Дата

Лист

6

РЦО 125.00.00 ПЗ

Частота вращения входного шкива цепной  передачи равна частоте вращения электродвигателя n=1432 мин-1.

Вращающий момент на выходном валу редуктора определяем по формуле:

Изм.

Лист

№ докум.

Подпись

Дата

Лист

7

РЦО 125.00.00 ПЗ


Изм.

Лист

№ докум.

Подпись

Дата

Лист

8

РЦО 125.00.00 ПЗ

2. Расчёт зубчатой передачи

2.1. Выбор твёрдости, термической обработки и материала колёс

Выбираем для изготовления колеса и шестерни сталь марки 40Х. Дополнительно применяем улучшение получая твердость 235…262 HB для колеса и 269…302 HB для шестерни.

2.2 Определим допускаемые контактные напряжения

Определим допускаемые контактные напряжения для шестерни и колеса по формуле:

где :

Нlim – предел контактной выносливости. В соответствии с табл.2.2 [1, с.13]:

тогда

SH – коэффициент запаса прочности принимаем в соответствии с рекомендациями [1, с.13], SH=1,1.

ZR – коэффициент, учитывающий влияние шероховатости сопряженных поверхностей зубьев. Принимаем ZR=0,95 в соответствии с рекомендациями [1, с.13];

ZV – коэффициент, учитывающий влияние окружной скорости. Принимаем ZV=1,10 в соответствии с рекомендациями [1, с.14].

ZN – коэффициент долговечности, учитывающий влияние ресурса определяем по формуле:

где NHG – число циклов, соответствующее перелому кривой усталости определяют по формуле:

Тогда

Nk – ресурс передачи в числах циклов перемены напряжения определяют по формуле:

остальные параметры принимаем в соответствии с рекомендациями [1, с.13],

Тогда

Принимаем ZN1=1и ZN2=1 в соответствии с рекомендациями.

И, следовательно

Изм.

Лист

№ докум.

Подпись

Дата

Лист

9

РЦО 125.00.00 ПЗ

Так как передача является цилиндрической с прямыми зубьями, принимаем допускаемое напряжение []Н=538,65Мпа.

2.3. Определим допускаемые напряжения изгиба

Определим допускаемое напряжение изгиба по следующей формуле:

где YN – коэффициент долговечности, учитывает влияние ресурса, определяем по формуле:

В соответствии с рекомендациями [1, с.15], принимаем:

Тогда

Принимаем YN1=1и YN2=1 в соответствии с рекомендациями.

YR – коэффициент учитывающий влияние шероховатости переходной поверхности принимаем YR=1 в соответствии с рекомендациями [1, с.15];

YA – коэффициент учитывающий влияние двустороннего приложения нагрузки принимаем YA=1 в соответствии с рекомендациями  [1, с.15];

Flim – предел выносливости при отнулевом цикле нагружения. принимаем в соответствии с табл.2.3 [1, с.14]:

Изм.

Лист

№ докум.

Подпись

Дата

Лист

10

РЦО 125.00.00 ПЗ

Тогда

SF – коэффициент запаса прочности принимаем в соответствии с рекомендациями [1, с.15], SF=1,7.

Тогда

Так как передача является конической с прямыми зубьями, принимаем допускаемое напряжение []F=255,8МПа.

2.4 Расчёт цилиндрической зубчатой передачи (2-ая ступень)

Производим предварительный расчёт межосевого расстояния aw’, мм:

где К – коэффициент поверхностной твёрдости в соответствии с рекомендациями [1, с.17], принимаем K=10; u – передаточное отношение редуктора u=2,5.

Тогда

Определим окружную скорость v, м/с:

Тогда

Изм.

Лист

№ докум.

Подпись

Дата

Лист

11

РЦО 125.00.00 ПЗ

По полученным данным приимем степень точности зубчатой передачи, примем 9 класс точности, применяемый для передач пониженной точности.

Уточним предварительно найденное значение межосевого расстояния:

где Ka=450 для прямозубых колёс.

ba – коэффициент ширины, принимаем в соответствии со стандартным рядом чисел и рекомендаций [1, с.17], ba=0,315.

Тогда

КН – коэффициент нагрузки в расчётах на контактную прочность:

где KHv –коэффициент, учитывающий внутреннюю динамику нагружения, принимаем в соответствии с рекомендациями табл. 2.6 [1, с.18], KHv=1,1

KH - коэффициент неравномерности распределения нагрузки по длине контактных линий, в соответствии с [1, с.18]:

где KH0 – коэффициент неравномерности распределения нагрузки в начальный период работы, в соответствии с табл. 2.7 [1, с.19], KH0=1,575.

KHw – коэффициент, учитывающий приработку зубьев, в соответствии с табл. 2.8 [1, с.19], KHw=0,452.

Тогда

Изм.

Лист

№ докум.

Подпись

Дата

Лист

12

РЦО 125.00.00 ПЗ

KH - коэффициент распределения нагрузки между зубьями, определяем по формуле:

где KH0 – начальное значение коэффициента распределения нагрузки между зубьями, находим из следующего выражения:

где nСТ – степень точности передачи, nСТ=9.

Тогда

И, следовательно

Уточняем предварительно найденное значение межосевого расстояния:

Учитывая стандартный ряд величин межосевых расстояний, принимаем aw=200мм.

Предварительно определим основные размеры.

Определяем делительный диаметр:

Определим ширину колеса:

Определим модуль передачи, для этого определим максимальное и минимальное значение модуля:

Изм.

Лист

№ докум.

Подпись

Дата

Лист

13

РЦО 125.00.00 ПЗ

где Km =3.4 103 для косозубых передач.

KF – коэффициент нагрузки при расчёте по напряжениям изгиба:

где КFv – коэффициент учитывающий внутреннюю динамику нагружения, принимаем КFv=1,11 по табл. 2.9 [1, с.20].

К – коэффициент неравномерности распределения напряжений у основания зубьев по ширине зубчатого венца:

К – коэффициент, учитывающий влияние погрешностей изготовления шестерни и колеса на распределение нагрузки между зубьями, причём К= К0=1,24.

Тогда

И следовательно

Принимаем значение модуля в соответствии с рядом размеров, m=2,5 мм.

Определим суммарное число зубьев по формуле:

где β – угол наклона зубьев, принимаем β=0˚.

Тогда

Определяем число зубьев шестерни:

Изм.

Лист

№ докум.

Подпись

Дата

Лист

14

РЦО 125.00.00 ПЗ

Принимаем ближайшее целое число Z1=64.

Определяем число зубьев колеса:

Уточняем фактическое передаточное число:

Определяем делительные диаметры:

Определяем диаметры окружностей вершин и впадин колес:

Проверим зубья колеса по контактным напряжениям.

Расчётное значение контактного напряжения определяем по формуле:

Изм.

Лист

№ докум.

Подпись

Дата

Лист

15

РЦО 125.00.00 ПЗ

где Zσ =960 Mпа1/2 для прямозубых колёс.

Тогда

Определяем силы в зацеплении.

Окружная сила:

Радиальная сила:

где α =20˚

Осевая сила Fa =0. Так как применено прямозубое зацепление.

Проверим зубья по напряжениям изгиба.

Для зубьев колеса:

где YFS2 – коэффициент учитывающий форму зуба. В соответствии с табл. 2.10 [1, с.23]. Принимаем YFS2=3,605.

Yβ=1 для прямозубых колёс, Yε=1 при степени точности 8.

Тогда

Для зубьев шестерни:

где YFS1 – коэффициент учитывающий форму зуба. В соответствии с табл. 2.10 [1, с.23]. Принимаем YFS1=3,91.

Тогда

Изм.

Лист

№ докум.

Подпись

Дата

Лист

16

РЦО 125.00.00 ПЗ

2.5. Расчёт цилиндрической зубчатой передачи (1-ая ступень)

Так как редуктор соосный принемаем =200 мм.

Определим окружную скорость v, м/с:

Тогда

Изм.

Лист

№ докум.

Подпись

Дата

Лист

17

РЦО 125.00.00 ПЗ

По полученным данным приимем степень точности зубчатой передачи, примем 8 класс точности, применяемый для передач пониженной точности.

Предварительно определим основные размеры.

Определяем делительный диаметр:

Определим ширину колеса:

Определим модуль передачи, для этого определим максимальное и минимальное значение модуля:

Изм.

Лист

№ докум.

Подпись

Дата

Лист

14

РЦО 125.00.00 ПЗ

где Km =3.4 103 для косозубых передач.

KF – коэффициент нагрузки при расчёте по напряжениям изгиба:

где КFv – коэффициент учитывающий внутреннюю динамику нагружения, принимаем КFv=1,092 по табл. 2.9 [1, с.20].

К – коэффициент неравномерности распределения напряжений у основания зубьев по ширине зубчатого венца:

К – коэффициент, учитывающий влияние погрешностей изготовления шестерни и колеса на распределение нагрузки между зубьями, причём К= К0=1,18.

Тогда

И следовательно

Принимаем значение модуля в соответствии с рядом размеров, m=1,5 мм.

Определим суммарное число зубьев по формуле:

где β – угол наклона зубьев, принимаем β=0˚.

Тогда

Определяем число зубьев шестерни:

Изм.

Лист

№ докум.

Подпись

Дата

Лист

18

РЦО 125.00.00 ПЗ

Принимаем ближайшее целое число Z1=53.

Определяем число зубьев колеса:

Уточняем фактическое передаточное число:

Определяем делительные диаметры:

Определяем диаметры окружностей вершин и впадин колес:

Проверим зубья колеса по контактным напряжениям.

Расчётное значение контактного напряжения определяем по формуле:

Изм.

Лист

№ докум.

Подпись

Дата

Лист

19

РЦО 125.00.00 ПЗ

где Zσ =9600 MПа для прямозубых колёс.

Тогда

Определяем силы в зацеплении.

Окружная сила:

Радиальная сила:

где α =20˚

Осевая сила Fa =0. Так как применено прямозубое зацепление.

Проверим зубья по напряжениям изгиба.

Для зубьев колеса:

где YFS2 – коэффициент учитывающий форму зуба. В соответствии с табл. 2.10 [1, с.23]. Принимаем YFS2=3,7.

Yβ=1 для прямозубых колёс, Yε=1 при степени точности 8.

Тогда

Для зубьев шестерни:

где YFS1 – коэффициент учитывающий форму зуба. В соответствии с табл. 2.10 [1, с.23]. Принимаем YFS1=3,59.

Тогда

Изм.

Лист

№ докум.

Подпись

Дата

Лист

20

РЦО 125.00.00 ПЗ


Изм.

Лист

№ докум.

Подпись

Дата

Лист

21

РЦО 125.00.00 ПЗ

3. Разработка эскизного проекта [1, с.42]

Определяем предварительные диаметры валов.

Для быстроходного вала шестерни диаметр определяется по следующей формуле:

В соответствии с ГОСТ 12080-66 принимаем значение d1=32мм.

Для быстроходного вала колеса диаметр определяется по следующей формуле:

В соответствии с ГОСТ 12080-66 принимаем значение d2=38мм.

Выбираем тип и марку подшипников.

Для быстроходной ступени применим подшипник 307 ГОСТ 8338-75.

Для тихоходной ступени применим подшипник 309 ГОСТ 8338-75.

Применяем схему установки подшипников «враспор».

Используем уплотнительные манжеты по ГОСТ 8752-79 типа: 1-40х60-3 и 1-45х65-3.

Основные конструктивные решения.

Определяем минимальное расстояние между деталями передач:

где L – расстояние между внешними поверхностями деталей передач. Примем L=250мм, равную сумме делительных диаметров.

Тогда

Определяем расстояние между дном корпуса и поверхностью колёс:

Изм.

Лист

№ докум.

Подпись

Дата

Лист

22

РЦО 125.00.00 ПЗ

Компоновка выполняется с таким расчетом, чтобы размеры редуктора в осевом направлении были небольшими, а валы жёсткими. Остальные размеры принимаются в соответствии с рекомендациями [1, с.257].

Крышки подшипниковых узлов конструируем в зависимости от диаметра внешнего кольца подшипника [1, с.148].

Конструкция зубчатого колеса проработана по рекомендации [1, с.63].

Смазка зубчатого зацепления осуществляется окунанием колеса в масло, заливаемое в корпус редуктора до определённого уровня. Применяем масло индустриальное И-70А по ГОСТ 20799-75 [1, с.178].

Смазка подшипников осуществляется разбрызгиванием масла шестерней и затеканием в подшипниковые полости. Это достоинство подшипников качения - требуют мало смазки.

Для контроля уровня масла предусматривается жезловой указатель уровня масла, а для слива отработанного масла сливная пробка. Для визуального контроля выработки редуктора используется смотровое окно, применяемое также для доливания масла.


4. Расчёт валов

Изм.

Лист

№ докум.

Подпись

Дата

Лист

23

РЦО 125.00.00 ПЗ

4.1. Рассчитываем быстроходный вал на статическую прочность

По чертежу вычерчиваем расчетную схему

Изм.

Лист

№ докум.

Подпись

Дата

Лист

24

РЦО 125.00.00 ПЗ

Рассматриваем действие изгибающих моментов в вертикальной плоскости.

Проверка:

Строим эпюру изгибающих моментов в вертикальной плоскости

Сечение A:

Сечение Б:

Сечение В:

Сечение Г:

Рассматриваем действие изгибающих моментов в горизонтальной плоскости.

Проверка:

Строим эпюру изгибающих моментов в горизонтальной плоскости

Сечение A:

Сечение Б:

Сечение В:

Сечение Г:

Крутящий (вращающий) момент

Изм.

Лист

№ докум.

Подпись

Дата

Лист

25

РЦО 125.00.00 ПЗ

Передача вращающего момента происходит вдоль оси вала со стороны входного участка до середины шестерни (Эпюра Т).

Суммарный изгибающий момент в сечении В, как наиболее нагруженном определяем по формуле:

где  КП=2,2 – коэффициент перегрузки табл. 24.9. [1, с.417]

Суммарный крутящий момент в сечении В:

Осевой момент сопротивления для вала шестерни:

.

Полярный момент сопротивления:

.

Нормальные и касательные напряжения в сечении В:

Коэффициент запаса прочности:

Конструктивно принятые размеры вала обеспечивают многократный запас, поэтому расчет на сопротивление усталости выполнять нецелесообразно.


Изм.

Лист

№ докум.

Подпись

Дата

Лист

26

РЦО 125.00.00 ПЗ

4.2. Рассчитываем тихоходный вал на статическую прочность

По чертежу вычерчиваем расчетную схему

Изм.

Лист

№ докум.

Подпись

Дата

Лист

27

РЦО 125.00.00 ПЗ

Рассматриваем действие изгибающих моментов в вертикальной плоскости.

Проверка:

Строим эпюру изгибающих моментов в вертикальной плоскости

Сечение A:

Сечение Б:

Сечение В:

Сечение Г:

Рассматриваем действие изгибающих моментов в горизонтальной плоскости.

Проверка:

Строим эпюру изгибающих моментов в горизонтальной плоскости

Сечение A:

Сечение Б:

Сечение В:

Сечение Г:

Крутящий (вращающий) момент

Изм.

Лист

№ докум.

Подпись

Дата

Лист

28

РЦО 125.00.00 ПЗ

Передача вращающего момента происходит вдоль оси вала со стороны входного участка до середины шестерни (Эпюра Т).

По эпюрам видно, что тихоходный вал малонагруженный и конструктивно принятые размеры вала обеспечивают многократный запас, поэтому расчет на сопротивление усталости выполнять нецелесообразно.

Проверочный расчет подшипников по заданному ресурсу работы [1, с.106]

Исходя из условий задания на курсовое проектирование и применяемой скорости вращения подшипников, расчёт на статическую и динамическую грузоподъёмности не является необходимым.

Производим расчёт подшипников на заданный ресурс.

Для быстроходной ступени применён подшипник 208, имеющий следующие характеристики: . Для тихоходной ступени применён подшипник 209, имеющий следующие характеристики: .

Вычислим эквивалентную динамическую нагрузку в наиболее нагруженной опоре:

,

где X,Y – коэффициенты, в соответствии с рекомендациями [1, с.106], при ;  X =1, Y=0,

Кб – коэффициент безопасности; Km – температурный коэффициент принимаем Кб = 1,2  в соответствии с рекомендациями табл. 7.4 [1, с.107], Кm = 1.

Тогда

,

Определяем скорректированный по уровню надёжности и условиям применения расчётный ресурс.

,

Изм.

Лист

№ докум.

Подпись

Дата

Лист

29

РЦО 125.00.00 ПЗ

где а123 – коэффициенты долговечности и совместного влияния, принимаем а1=1 , а23=0,75 в соответствии с рекомендациями [1, с.108]; n –частота вращения вала.

Тогда

Для быстроходного вала:

,

Для тихоходного вала

.

Все подшипники удовлетворяют условию долговечности.


Изм.

Лист

№ докум.

Подпись

Дата

Лист

30

РЦО 125.00.00 ПЗ

5. Расчёт соединений [2, с.168]

В соответствии с заданием и при условии достаточной соосности целесообразно использовать упругую втулочно-пальцевую муфту по ГОСТ 21424-93. Применение такой муфты позволяет компенсировать нежелательные усилия на приводном валу.

Проверка прочности шпоночных соединений.                             

Шпонки призматические со скруглёнными торцами. Размеры сечений шпонок и пазов и длинны шпонок - по ГОСТ 23360-78. Материал шпонок - Сталь 45 нормализованная.

Для тихоходного вала напряжение смятия определяем по формуле:

,

где T2 – крутящий момент на тихоходном валу, d – диаметр вала, h – высота шпонки, b – ширина шпонки, l – длинна шпонки, t1 – глубина паза.

Тогда

.

Для быстроходного вала напряжение смятия определяем по формуле:

,

где T1 – крутящий момент на быстроходном валу, d – диаметр вала, h – высота шпонки, b – ширина шпонки, l – длинна шпонки, t1 – глубина паза.

Тогда

.

Допускаемые напряжения смятия при стальной ступице =110...125МПа, при чугунной  =50...70МПа. (материал полумуфт  Сталь 45).

Условие выполнено .

Изм.

Лист

№ докум.

Подпись

Дата

Лист

31

РЦО 125.00.00 ПЗ

Список использованных источников

1. Конструирование узлов и деталей машин: Учебное пособие для машиностроительных спец. Вузов / П.Ф.Дунаев, О.П.Леликов. -7-е изд., перераб. и доп.-М.:Высш. шк., 2001-447 с., ил.

4. Курсовое проектирование деталей машин: Учеб. пособие для техникумов/ С. А. Чернавский, К. Н. Боков, И.М. Чернин и др.-2-е изд., перераб. и доп. - М.:Машиностроение , 1988. - 416 с.: ил.


 

А также другие работы, которые могут Вас заинтересовать

16277. Типы эффектов в Adobe Premire Pro 2.0 123 KB
  Лабораторная работа №2 Типы эффектов в Adobe Premire Pro 2.0 1 Цель работы 1.1 Изучить типы эффектов в программе Adobe Premire Pro 2.0. 1.2 Получить практические навыки работы с эффектами в Adobe Premiere Pro 2.0. 1.3 Смонтировать видеоролик с использованием эффектов. 2 Литература 2.1 Приложе
16278. Создание титров в Adobe Premiere Pro 2.0 187.5 KB
  Лабораторная работа №3 Создание титров в Adobe Premiere Pro 2.0 1 Цель работы 1.1 Изучить методы создания и редактирования титров в программе Adobe Premiere Pro 2.0. 1.2 Смонтировать видеоролик с применением титров/субтитров. 2 Литература 2.1 Приложение Общие сведения о титрах. ...
16279. Работа со звуком в Adobe Premiere Pro 2.0 183.5 KB
  Лабораторная работа №4 Работа со звуком в Adobe Premiere Pro 2.0 1 Цель работы 1.1 Получить практические навыки при работе со звуковыми файлами в программе Adobe Premiere Pro 2.0. 1.3 Смонтировать видеоролик с использованием эффектов. 2 Литература 2.1 Приложение Работа со звуком. ...
16280. Рирпроекция в Adobe Premiere Pro 2.0 183 KB
  Лабораторная работа №5 Рирпроекция в Adobe Premiere Pro 2.0 1 Цель работы 1.1 Ознакомиться с технологией рирпроекции применяемой в видеопроизводстве. 1.2 Получить практические навыки создания цветовой рирпроекции в программе Adobe Premiere Pro 2.0. 1.3 Смонтировать видеоролик с прим
16281. Создание видеодиска в Nero StartSmart 3 MB
  Лабораторная работа №3 Создание видеодиска 1 Цель работы: 1.1Научиться пользоваться программой Nero StartSmart. 1.2Научиться производить запись цифрового видео на DVD для возможности его дальнейшего просмотра на DVDплеере. 2 Литература: 2.1 Приложение А. 3 Подгото
16282. Анализатор спектра DL-4. Работа со спутником 1.3 MB
  Лабораторная работа №1 Анализатор спектра DL4. Работа со спутником 1 Цель работы: 1.1 Получить навыки работы с прибором DL4. 1.2 Научиться настраиваться на нужную программу и фиксировать её в памяти прибора. 1.2 Научиться заносить данные прибора в компьютер при помощи
16283. Система проектирования электронных схем. Логические элементы 153 KB
  Лабораторная работа № Тема: Система проектирования электронных схем. Логические элементы Цель: Научиться с помощью системы EWB анализировать работу электронных схем работать с электронным знакогенератором и осциллографом. Оборудование: IBM PC Программное
16284. Исследование принципиальных электрических схем простых логических элементов (И, ИЛИ, НЕ) 47 KB
  Лабораторная работа № Тема: Исследование принципиальных электрических схем простых логических элементов И ИЛИ НЕ Цель работы: Проанализировать работу принципиальных электрических схем простых логических элементов И ИЛИ НЕ Оборудование:IBM PC Программно
16285. Анализ работы триггеров 78 KB
  Лабораторная работа № Тема: Анализ работы триггеров. Цель: С помощью системы EWB проанализировать работу триггеров. Оборудование. IBM PС. Программное обеспечение: windows ewb. Вопросы для повторения: Что такое триггер Какие бывают триггеры3.Принцип работ триггер...