49688

Визуализация численных методов

Курсовая

Информатика, кибернетика и программирование

В курсовой работе требуется написать программу на языке Visual Basic, для решения и визуализации данного дифференциального уравнения первого порядка при помощи графика. В программе я сравню эти два метода и затем попытаюсь оценить погрешность и правильность решения.

Русский

2014-01-07

1.19 MB

4 чел.

СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ТЕЛЕКОММУИКАЦИЙ ИИНФОРМАТИКИ

Кафедра физики, прикладной математики и информатики

Курсовая по информатике

             

           На тему: «Визуализация численных методов»

      Студент: Паршуков Артем Алексеевич

Группа:  МЕ-51

      Преподаватель: Минина Елена Евгеньевна

 

Екатеринбург 2006

Оглавление

[1] Оглавление

[1.1] Постановка задачи:

[1.2] Математическая модель:

[2]
Описание используемых методов

[2.1] Метод Эйлера модифицированного

[2.2] Блок-схема описания функции:

[2.3] Исходная форма:

[2.4] Итоговая форма:

[3] Листинг программы на языке Visual Basic

[4] Вывод


Введение

В данной курсовой работе у меня состоит задача в том, чтобы решить дифференциальное уравнение  с помощью двух методов:1)Эйлер 2) Эйлер Модифицированный

В курсовой работе требуется написать программу на языке Visual Basic, для решения и визуализации данного дифференциального уравнения первого порядка при помощи графика. В программе я сравню эти два метода и затем попытаюсь оценить погрешность и  правильность решения.


Постановка задачи и математическая модель

Постановка задачи:

Дано дифференциальное уравнение и начальное условие . Требуется найти функцию , удовлетворяющую как указанному уравнению, так и начальному условию. Также получить результаты в виде таблицы, и затем их отобразить на графиках.

Математическая модель:

Дано:

 

X0=0

Xk=0.8

h=0.05

Y0=4

Найти:

Y - массив значений искомого решения в узлах сетки.


Описание используемых методов

Метод Эйлера:

Данный метод одношаговый. Табулирование функции происходит поочередно в каждой точке. Для расчета значения функции в очередном узле необходимо использовать значение функции в одном предыдущем узле.

Пусть дано дифференциальное уравнение первого порядка:


с начальным условием:              

Выберем шаг h=0.1 и введём обозначения:

и , где  =0,1,2…,

-узлы сетки,

-значение интегральной функции в узлах.

В соответствии с геометрическим смыслом задачи, прямая АВ является касательной к интегральной функции. Произведём замену точки интегральной функции точкой, лежащей на касательной АВ.

Тогда                                 (2).

Из прямоугольного треугольника АВС:                                        (3).

Приравняем правые части (1) и(3). Получим .

Отсюда

Подставим в это выражение формулу (2), а затем преобразуем его. В результате получаем формулу расчёта очередной точки интегральной функции:  (4).

Из формулы (4) видно, что для расчета каждой следующей точки интегральной функции необходимо знать значение только одной предыдущей точки. Таким образом, зная начальные условия, можно построить интегральную кривую на заданном промежутке.

Метод Эйлера модифицированного

Этот метод используется для уменьшения погрешности вычислений.

Пусть дано дифференциальное уравнение первого порядка:

с начальным условием: 

Выберем шаг h=0.1 и введём обозначения: и , где  =0,1,2…,

-узлы сетки,

-значение интегральной функции в узлах.

При использовании модифицированного метода Эйлера шаг h делится на два отрезка.

Иллюстрации к решению приведены на рисунке 4.

 

Проведем решение в несколько этапов:

1.   Обозначим точки: А(хi; уi), C(xi+h/2, yi+h/2*f(xi; yi)) и В(хi+1; yi+1).

2.   Через точку А проведем прямую под углом , где

3.   На этой прямой найдем точку C(xi+h/2, yi+h/2*f(xi; yi)).

4.   Через точку С проведем прямую под углом, где                                                                                                                                                                                                         

5.   Через точку А проведем прямую, параллельную последней прямой.

6. Найдем точку Bi+1; yi+1). Будем считать В(хi+1; yi+1) решением дифференциального уравнения при х= хi+1.                                                                                                  

7.   После проведения вычислений, аналогичных вычислениям, описанным в методе Эйлера, получим формулу для определения значения yi+1: 

Модифицированный метод Эйлера дает меньшую погрешность. На рисунке 4 это хорошо видно. Так величина  характеризует погрешность метода Эйлера, а  - погрешность метода Эйлера модифицированного.


Блок-схемы

Блок-схема описания функции:


Виды формы проекта

Исходная форма:

Итоговая форма:

Листинг программы на языке Visual Basic

Dim x(25) As Single, y1(25) As Single, y2(25) As Single, y3(25) As Single

Private x0 As Single

Private xk As Single

Function f(x, y As Single) As Single

   f = 2 * y * x / (x + 1)

End Function

Private Sub Command1_Click()

Dim k, k1, k2, k3, k4, y0, r As Single

Dim i

   x0 = Val(text1.Text)

   xk = Val(Text2.Text)

   h = Val(Text3.Text)

   y0 = Val(Text4.Text)

   e = 2.7

   n = Round((xk - x0) / h)

   c = (y0 * (x0 + 1) ^ 2) / Ee ^ (2 * x0)

   MSFlexGrid1.Rows = n + 2

   MSFlexGrid1.TextMatrix(0, 0) = "X"

   MSFlexGrid1.TextMatrix(0, 1) = "Y(Э)"

   MSFlexGrid1.TextMatrix(0, 2) = "Y(ЭМ)"

   MSFlexGrid1.TextMatrix(0, 3) = "Y(О)"

   Max = 0

   Min = y0

   y2(i) = y0

   y3(i) = y0

For i = 0 To n

   x(i) = x0 + i * h

   MSFlexGrid1.TextMatrix(i + 1, 0) = x(i)

   y1(i) = (e ^ (2 * x(i))) * c / (x(i) + 1) ^ 2

   MSFlexGrid1.TextMatrix(i + 1, 3) = Str(Round(y1(i), 4))

    y2(i + 1) = y2(i) + h * f(x(i) + h / 2, y2(i) + h / 2 * f(x(i), (y2(i))))

   MSFlexGrid1.TextMatrix(i + 1, 2) = Str(Round(y2(i), 4))

   y3(i + 1) = y3(i) + h * f(x(i), y3(i))

   MSFlexGrid1.TextMatrix(i + 1, 1) = Str(Round(y3(i), 4))

If y1(i) > Max Then Max = y1(i)

If y1(i) < Min Then Min = y1(i)

Next i

   Label5.Caption = Str(Round(Max, 4))

   Label6.Caption = Str(Round(Min, 4))

   Label7.Caption = Str(x0)

   Label8.Caption = Str(xk)

   Picture1.Cls

       kx = (Picture1.Width - 1000) / (xk - x0)

       ky = (Picture1.Height - 1050) / (Max - Min)

For i = 1 To n - 1

   z1 = Round(250 + (x(i) - x0) * kx)

   z2 = Round(5045 - (y1(i) - Min) * ky)

   z3 = Round(250 + (x(i + 1) - x0) * kx)

   z4 = Round(5045 - (y1(i + 1) - Min) * ky)

   Picture1.Line (z1, z2)-(z3, z4)

   z1 = Round(250 + (x(i) - x0) * kx)

   z2 = Round(5045 - (y3(i) - Min) * ky)

   z3 = Round(250 + (x(i + 1) - x0) * kx)

   z4 = Round(5045 - (y3(i + 1) - Min) * ky)

   Picture1.Line (z1, z2)-(z3, z4)

   z1 = Round(250 + (x(i) - x0) * kx)

   z2 = Round(5045 - (y2(i) - Min) * ky)

   z3 = Round(250 + (x(i + 1) - x0) * kx)

   z4 = Round(5045 - (y2(i + 1) - Min) * ky)

   Picture1.Line (z1, z2)-(z3, z4)

Next i

End Sub

Вывод 

В данной курсовой работе было рассмотрено два метода решения дифференциального уравнения: Эйлер и Эйлер модифицированный. Значения этих двух методов и общего решения сводится в таблицу, на основании которой строится график.

Из графика видно, что метод Эйлера имеет большую погрешность, чем метод Эйлера модифицированного. Кривая общего решения находится между двумя этими кривыми, ближе к кривой Эйлера модифицированного.


Начало

X0,Xk,Y0,h

n=(Xk-X0)/h

X(i)=Xo+i*h

C=y^2+(1-x)^2

Y3(i)

i=0..n

X(i)

Y1(i)

y1(i)=(e ^ (2 * x(i))) * c / (x(i) + 1) ^ 2

Y1(i)>MAX

MAX=Y1(i)

MIN=Y1(i)

Y1(i)<MIN

y2(i + 1)=y2(i) + h*f(x(i) + h / 2, y2(i) + h / 2 * f(x(i), (y2(i))))

Y2(i)

2

y3(i + 1) = y3(i) + h * f(x(i), y3(i))

Y2(i)

Label7

Label8

2

Label6

Z4=(y1(i+1)-MIN)*KY

Z3= (X(i+1)-X0)*KX

Z2=(y1(i)-MIN)*KY

Z1= (X(i)-X0)*KX

i=0..n-1   

KY=(Height-1050)/(MAX-MIN)

KX=(Width-1000)/(Xk-X0)

Line(Z1,Z2)-(Z3,Z4)

Z2=(y2(i)-MIN)*KY

Z1= (X(i)-X0)*KX

2

2

Z4=(y2(i+1)-MIN)*KY

Z3=(X(i+1)-X0)*KX

Line(Z1,Z2)-(Z3,Z4)

Line(Z1,Z2)-(Z3,Z4)

Z4=(y3(i+1)-MIN)*KY

Z3= (X(i+1)-X0)*KX

Z2=(y3(i)-MIN)*KY

Z1= (X(i)-X0)*KX

Конец

f=2xy/(x+1)

F(x,y)

Конец

1

3

1

3

1

3

1

3

Text3

Label4

Text4

Label2

Text2

Label3

Label1

Text1

MSFlexGrid1

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

Label5

Command1

Picture1

Min=y0, Max=0,

Y2=y0, y3=y0

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  

EMBED Equation.DSMT4  


 

А также другие работы, которые могут Вас заинтересовать

32438. CИCТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН 144.5 KB
  CИCТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. РАСПРЕДЕЛЕНИЕ СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. Пусть Х = Х1 Х2Хn совокупность или система случайных величин. Функцией распределения системы случайных величин называется вероятность совместного выполнения неравенств k = 1 2 .
32439. ЗАВИСИМОСТЬ И КОВАРИАЦИЯ 87.5 KB
  Для доказательства необходимости продифференцируем по x и y обе части равенства из определения независимых случайных величин. Дискретные случайные величины независимы тогда и только тогда когда для любых пар значений случайных величин X и Y. Для независимых случайных величин X и Y ковариация равна 0. Из утверждений 2 и 3 следует что для независимых случайных величин X и Y MXY = MX  MY если MX и MY существуют.
32440. НЕКОТОРЫЕ ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ 106.5 KB
  Пусть X1X2Xn взаимно независимые случайные величины с одной и той же функцией распределения Fx. Характеристической функцией распределения Fx или случайной величины X называется математическое ожидание случайной величины Замечание. В данном случае под случайной величиной будем понимать пару действительных функций Если X имеет плотность fx то Например характеристическая функция стандартного нормального распределения Если X дискретная случайная величина где xi значение...
32441. ЗАКОН БОЛЬШИХ ЧИСЕЛ 83 KB
  ЗАКОН БОЛЬШИХ ЧИСЕЛ. Закон больших чисел позволяет установить новую точку зрения на вероятность случайных событий и математическое ожидание случайной величины. Cуть закона больших чисел состоит в том что конкретные особенности каждого отдельного случайного явления почти не сказываются на среднем результате множества таких явлений случайные отклонения от среднего неизбежные в каждом отдельном случае в массе таких случаев почти всегда взаимно погашаются и выравниваются. Для доказательства закона больших чисел нам потребуется Лемма...
32442. CЛУЧАЙНЫЕ СОБЫТИЯ 48.5 KB
  В случае с монетой это число P = 1 2. Естественно было бы это число Р и принять за вероятность некоторого исхода. Но проблема заключается в том что на практике мы имеем дело не со всей последовательностью частот а только с конечным числом ее членов и следовательно не можем судить о ее пределе. В этом случае вероятность события определяется формулой: P = N N где N число элементарных событий которые приводят к наступлению события .
32443. ГЕОМЕТРИЧЕСКИЕ ВЕРОЯТНОСТИ 186 KB
  Cогласно классическому определению в опытах с конечным числом равновозможных исходов вероятность события А это доля исходов которые приводят к наступлению события А в общем количестве исходов. Определять вероятность как долю благоприятных исходов можно и в опытах с бесконечным числом исходов. Какова вероятность что пассажир пришедший на платформу отправится с нее не позже чем через 15 минуты Пространство элементарных исходов состоит из бесконечного множества точек отрезка [АВ] см. Пространство элементарных исходов...
32444. УСЛОВНЫЕ ВЕРОЯТНОСТИ 81 KB
  Если в одном эксперименте могут произойти события А и В то возникает вопрос как влияет возможность наступления события А на наступление события В. Если вероятность события А можно рассматривать как долю элементарных исходов приводящих к наступлению события А среди всех элементарных исходов пространства то условную вероятность события А при условии что событие В произошло можно рассматривать как долю исходов приводящих к событию А во множестве элементарных исходов образующих событие В. Условная...
32445. ДИСКРЕТНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ 115 KB
  СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. ДИСКРЕТНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. Cлучайные величины будем обозначать большими латинскими буквами а значения которые они принимают соответствующими малыми. Различают дискретные непрерывные случайные величины и случайные величины с сингулярным распределением.
32446. ПРОИЗВОДЯЩАЯ ФУНКЦИЯ 97 KB
  В каждом из них событие А может наступить с положительной вероятностью p. Вероятность что Х примет значение k т. в n испытаниях k раз наступит успех Действительно вероятность наступления k успехов в k фиксированных испытаниях и n k неудач в остальных n k испытаниях равна Распределить k успехов среди n испытаний можно способами. Какова вероятность что герб выпадет 4 раза При каждом подбрасывании успех выпадение герба n = 10 k = 4 р = 1 2.