49746

Разработка конструкции привода растворонасоса

Курсовая

Производство и промышленные технологии

Разработанный редуктор имеет конструкцию, обеспечивающую высокую надёжность и простоту монтажа и обслуживания. Все элементы привода выбраны с небольшим запасом, что обеспечивает повышенную надёжность в случае непредвиденных пиковых нагрузок связанных с областью применения привода.

Русский

2015-01-19

311.74 KB

3 чел.

 ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

Государственное общеобразовательное учреждение высшего профессионального образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-

СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ»

Кафедра прикладной механики

и материаловедения

ПРОЕКТИРОВАНИЕ ПРИВОДА

Расчетно-пояснительная записка к курсовому проекту

по  дисциплине “Детали машин”

Выполнил: Дьяков Д. А. гр. 348-1.

Руководитель проекта: Шабанов Д. В.

Томск 2011г.


Содержание

                                                                                                                      

Введение  3

1. Выбор электродвигателя и общий расчёт редуктора   4

1.1. Выбор электродвигателя  4

1.2. Уточнение передаточных чисел привода   4

1.3. Определение вращающих моментов на валах привода   5

2. Расчёт зубчатых передач   6

2.1. Выбор твёрдости, термической обработки

и материала колёс             6

2.2 Определим допускаемые контактные напряжения  6

2.3. Определим допускаемые напряжения изгиба   7

2.4 Расчёт цилиндрической зубчатой передачи (2-ая ступень) 8

2.5 Расчёт цилиндрической зубчатой передачи (1-ая ступень) 13

3. Разработка эскизного проекта  16

4. Расчёт валов  18

4.1 Проверочный расчёт валов (быстроходный вал) 18

4.2 Проверочный расчёт валов (тихоходный вал) 21

5. Расчёт соединений   24

Список использованных источников  25

Приложение А – Спецификация редуктора цилиндрического 26


Введение

В соответствии с техническим заданием на курсовое проектирование разработана конструкция привода растворонасоса. Пояснительная записка содержит 25с., 2 рисунка, графическая часть 2л.

Разработанный редуктор имеет конструкцию, обеспечивающую высокую надёжность и простоту монтажа и обслуживания.

Все элементы привода выбраны с небольшим запасом, что обеспечивает повышенную надёжность в случае непредвиденных пиковых нагрузок связанных с областью применения привода.


1. Выбор электродвигателя и общий расчёт редуктора

1.1. Выбор электродвигателя

Для выбора электродвигателя определяем требуемую его мощность и частоту вращения.

Требуемая мощность (кВт) электродвигателя привода определяем по формуле:

где  Рв - потребляемая мощность измельчителя,

Здесь 1,2,3,муфты,подш - КПД отдельных звеньев кинематической цепи, значения которых принимаем по табл. 1.1. [1, с.6]

По табл. 24.9. [1, с.417] подбираем электродвигатель. Наиболее подходящим является электродвигатель АИР 100S4/1410 серии обладающий следующими характеристиками: мощность Р=3 кВт, синхронная частота n=1410 мин-1.

1.2. Уточнение передаточных чисел привода

Определяем общее передаточное отношение привода по формуле:

Тогда

Находим передаточное число редуктора:

Тогда

Принимаем  

Уточняем передаточное отношение открытой передачи(цепной):

1.3. Определение вращающих моментов на валах привода

Частота вращения входного вала редуктора n1 определяем по формуле:

Частота вращения входного шкива цепной  передачи равна частоте вращения электродвигателя n=1410 мин-1.

Вращающий момент на выходном валу редуктора определяем по формуле:

         


2. Расчёт зубчатой передачи

2.1. Выбор твёрдости, термической обработки и материала колёс

Выбираем для изготовления колеса и шестерни сталь марки 40Х. Дополнительно применяем улучшение получая твердость 235…262 HB для колеса и 269…302 HB для шестерни.

2.2 Определим допускаемые контактные напряжения

Определим допускаемые контактные напряжения для шестерни и колеса по формуле:

где :

Нlim – предел контактной выносливости. В соответствии с табл.2.2 [1, с.13]:

тогда

SH – коэффициент запаса прочности принимаем в соответствии с рекомендациями [1, с.13], SH=1,1.

ZR – коэффициент, учитывающий влияние шероховатости сопряженных поверхностей зубьев. Принимаем ZR=0,95 в соответствии с рекомендациями [1, с.13];

ZV – коэффициент, учитывающий влияние окружной скорости. Принимаем ZV=1,10 в соответствии с рекомендациями [1, с.14].

ZN – коэффициент долговечности, учитывающий влияние ресурса определяем по формуле:

где NHG – число циклов, соответствующее перелому кривой усталости определяют по формуле:

Тогда

Nk – ресурс передачи в числах циклов перемены напряжения определяют по формуле:

остальные параметры принимаем в соответствии с рекомендациями [1, с.13],

Тогда

Принимаем ZN1=1и ZN2=1 в соответствии с рекомендациями.

И, следовательно

Так как передача является цилиндрической с прямыми зубьями, принимаем допускаемое напряжение []Н=515,45 Мпа.

2.3. Определим допускаемые напряжения изгиба

Определим допускаемое напряжение изгиба по следующей формуле:

где YN – коэффициент долговечности, учитывает влияние ресурса, определяем по формуле:

В соответствии с рекомендациями [1, с.15], принимаем:

Тогда

Принимаем YN1=1и YN2=1 в соответствии с рекомендациями.

YR – коэффициент учитывающий влияние шероховатости переходной поверхности принимаем YR=1 в соответствии с рекомендациями [1, с.15];

YA – коэффициент учитывающий влияние двустороннего приложения нагрузки принимаем YA=1 в соответствии с рекомендациями  [1, с.15];

Flim – предел выносливости при отнулевом цикле нагружения. принимаем в соответствии с табл.2.3 [1, с.14]:

Тогда

SF – коэффициент запаса прочности принимаем в соответствии с рекомендациями [1, с.15], SF=1,7.

Тогда

Так как передача является конической с прямыми зубьями, принимаем допускаемое напряжение []F=255,81 МПа.

2.4 Расчёт цилиндрической зубчатой передачи (2-ая ступень)

Производим предварительный расчёт межосевого расстояния aw’, мм:

где К – коэффициент поверхностной твёрдости в соответствии с рекомендациями [1, с.17], принимаем K=10; u – передаточное отношение редуктора u=3,6.

Тогда

Определим окружную скорость v, м/с:

Тогда

По полученным данным приимем степень точности зубчатой передачи, примем 9 класс точности, применяемый для передач пониженной точности.

Уточним предварительно найденное значение межосевого расстояния:

где Ka=450 для прямозубых колёс.

ba – коэффициент ширины, принимаем в соответствии со стандартным рядом чисел и рекомендаций [1, с.17], ba=0,4.

Тогда

КН – коэффициент нагрузки в расчётах на контактную прочность:

где KHv –коэффициент, учитывающий внутреннюю динамику нагружения, принимаем в соответствии с рекомендациями табл. 2.6 [1, с.18], KHv=1,06

KH - коэффициент неравномерности распределения нагрузки по длине контактных линий, в соответствии с [1, с.18]:

где KH0 – коэффициент неравномерности распределения нагрузки в начальный период работы, в соответствии с табл. 2.7 [1, с.19], KH0=1,092.

KHw – коэффициент, учитывающий приработку зубьев, в соответствии с табл. 2.8 [1, с.19], KHw=0,26.

Тогда

KH - коэффициент распределения нагрузки между зубьями, определяем по формуле:

где KH0 – начальное значение коэффициента распределения нагрузки между зубьями, находим из следующего выражения:

где nСТ – степень точности передачи, nСТ=9.

Тогда

И, следовательно

Уточняем предварительно найденное значение межосевого расстояния:

Учитывая стандартный ряд величин межосевых расстояний, принимаем aw=200мм.

Предварительно определим основные размеры.

Определяем делительный диаметр:

Определим ширину колеса:

Определим модуль передачи, для этого определим максимальное и минимальное значение модуля:

где Km =3.4 103 для косозубых передач.

KF – коэффициент нагрузки при расчёте по напряжениям изгиба:

где КFv – коэффициент учитывающий внутреннюю динамику нагружения, принимаем КFv=1,11 по табл. 2.9 [1, с.20].

К – коэффициент неравномерности распределения напряжений у основания зубьев по ширине зубчатого венца:

К – коэффициент, учитывающий влияние погрешностей изготовления шестерни и колеса на распределение нагрузки между зубьями, причём К= К0=1,24.

Тогда

И следовательно

Принимаем значение модуля в соответствии с рядом размеров, m=2,5 мм.

Определим суммарное число зубьев по формуле:

где β – угол наклона зубьев, принимаем β=0˚.

Тогда

Определяем число зубьев шестерни:

Принимаем ближайшее целое число Z1=35.

Определяем число зубьев колеса:

Уточняем фактическое передаточное число:

Определяем делительные диаметры:

Определяем диаметры окружностей вершин и впадин колес:

Проверим зубья колеса по контактным напряжениям.

Расчётное значение контактного напряжения определяем по формуле:

где Zσ =960 Mпа1/2 для прямозубых колёс.

Тогда

Определяем силы в зацеплении.

Окружная сила:

Радиальная сила:

где α =20˚

Осевая сила Fa =0. Так как применено прямозубое зацепление.

Проверим зубья по напряжениям изгиба.

Для зубьев колеса:

где YFS2 – коэффициент учитывающий форму зуба. В соответствии с табл. 2.10 [1, с.23]. Принимаем YFS2=3,59.

Yβ=1 для прямозубых колёс, Yε=1 при степени точности 8.

Тогда

Для зубьев шестерни:

где YFS1 – коэффициент учитывающий форму зуба. В соответствии с табл. 2.10 [1, с.23]. Принимаем YFS1=3,75.

Тогда

2.5 Расчёт цилиндрической зубчатой передачи (1-ая ступень)

Так как редуктор соосный принемаем =200 мм.

Определим окружную скорость v, м/с:

Тогда

По полученным данным приимем степень точности зубчатой передачи, примем 8 класс точности, применяемый для передач пониженной точности.

Предварительно определим основные размеры.

Определяем делительный диаметр:

Определим ширину колеса:

Определим модуль передачи, для этого определим максимальное и минимальное значение модуля:

где Km =3.4 103 для косозубых передач.

KF – коэффициент нагрузки при расчёте по напряжениям изгиба:

где КFv – коэффициент учитывающий внутреннюю динамику нагружения, принимаем КFv=1,22 по табл. 2.9 [1, с.20].

К – коэффициент неравномерности распределения напряжений у основания зубьев по ширине зубчатого венца:

К – коэффициент, учитывающий влияние погрешностей изготовления шестерни и колеса на распределение нагрузки между зубьями, причём К= К0=1,24.

Тогда

И следовательно

Принимаем значение модуля в соответствии с рядом размеров, m=2мм.

Определим суммарное число зубьев по формуле:

где β – угол наклона зубьев, принимаем β=0˚.

Тогда

Определяем число зубьев шестерни:

Принимаем ближайшее целое число Z1=29.

Определяем число зубьев колеса:

Уточняем фактическое передаточное число:

Определяем делительные диаметры:

Определяем диаметры окружностей вершин и впадин колес:

Проверим зубья колеса по контактным напряжениям.

Расчётное значение контактного напряжения определяем по формуле:

где Zσ =9600 MПа для прямозубых колёс.

Тогда

Определяем силы в зацеплении.

Окружная сила:

Радиальная сила:

где α =20˚

Осевая сила Fa =0. Так как применено прямозубое зацепление.

Проверим зубья по напряжениям изгиба.

Для зубьев колеса:

где YFS2 – коэффициент учитывающий форму зуба. В соответствии с табл. 2.10 [1, с.23]. Принимаем YFS1=3,8.

Yβ=1 для прямозубых колёс, Yε=1 при степени точности 8.

Тогда

Для зубьев шестерни:

где YFS1 – коэффициент учитывающий форму зуба. В соответствии с табл. 2.10 [1, с.23]. Принимаем YFS2=3,59.

Тогда

          3. Разработка эскизного проекта [1, с.42]

Определяем предварительные диаметры валов.

Для быстроходного вала шестерни диаметр определяется по следующей формуле:

В соответствии с ГОСТ 12080-66 принимаем значение d1=30мм.

Для быстроходного вала колеса диаметр определяется по следующей формуле:

В соответствии с ГОСТ 12080-66 принимаем значение d2=55мм.

Основные конструктивные решения.

Определяем минимальное расстояние между деталями передач:

где L – расстояние между внешними поверхностями деталей передач. Примем L=400мм, равную сумме делительных диаметров.

Тогда

Определяем расстояние между дном корпуса и поверхностью колёс:

Компоновка выполняется с таким расчетом, чтобы размеры редуктора в осевом направлении были небольшими, а валы жёсткими. Остальные размеры принимаются в соответствии с рекомендациями [1, с.257].

Крышки подшипниковых узлов конструируем в зависимости от диаметра внешнего кольца подшипника [1, с.148].

Конструкция зубчатого колеса проработана по рекомендации [1, с.63].

Смазка зубчатого зацепления осуществляется окунанием колеса в масло, заливаемое в корпус редуктора до определённого уровня. Применяем масло индустриальное И-70А по ГОСТ 20799-75 [1, с.178].

Смазка подшипников осуществляется разбрызгиванием масла шестерней и затеканием в подшипниковые полости. Это достоинство подшипников качения - требуют мало смазки.

Для контроля уровня масла предусматривается жезловой указатель уровня масла, а для слива отработанного масла сливная пробка. Для визуального контроля выработки редуктора используется смотровое окно, применяемое также для доливания масла.


4. Расчёт валов

4.1. Рассчитываем быстроходный вал на статическую прочность

По чертежу вычерчиваем расчетную схему

Rx4

Ry4

Rx2

Ry2

Fy3

Fx3

4

3

1

2

66

72

56,5

-46795

Mx, Hxмм

-14795

7550

My, Hxмм

Mкр(max) = Ткр, Hxмм

Рассматриваем действие изгибающих моментов в вертикальной плоскости.

Проверка:

Строим эпюру изгибающих моментов в вертикальной плоскости

Сечение A:

Сечение Б:

Сечение В:

Сечение Г:

Рассматриваем действие изгибающих моментов в горизонтальной плоскости.

Проверка:

Строим эпюру изгибающих моментов в горизонтальной плоскости

Сечение A:

Сечение Б:

Сечение В:

Сечение Г:

Крутящий (вращающий) момент

Передача вращающего момента происходит вдоль оси вала со стороны входного участка до середины шестерни (Эпюра Т).

Суммарный изгибающий момент в сечении В, как наиболее нагруженном определяем по формуле:

где  КП=2,2 – коэффициент перегрузки табл. 24.9. [1, с.417]

Суммарный крутящий момент в сечении В:

Осевой момент сопротивления для вала шестерни:

.

Полярный момент сопротивления:

.

Нормальные и касательные напряжения в сечении В:

Коэффициент запаса прочности:

Конструктивно принятые размеры вала обеспечивают многократный запас, поэтому расчет на сопротивление усталости выполнять нецелесообразно.


4.2. Рассчитываем тихоходный вал на статическую прочность

По чертежу вычерчиваем расчетную схему

Rx3

Ry3

Rx1

Ry1

Fy2

Fx2

   

2

3

1

4

65,5

65,5

62

Mx, Hxмм

-103500

290194

-55940

My, Hxмм

Mкр(max) = Ткр, Hxмм

Рассматриваем действие изгибающих моментов в вертикальной плоскости.

Проверка:

Строим эпюру изгибающих моментов в вертикальной плоскости

Сечение A:

Сечение Б:

Сечение В:

Сечение Г:

Рассматриваем действие изгибающих моментов в горизонтальной плоскости.

Проверка:

Строим эпюру изгибающих моментов в горизонтальной плоскости

Сечение A:

Сечение Б:

Сечение В:

Сечение Г:

Крутящий (вращающий) момент

Передача вращающего момента происходит вдоль оси вала со стороны входного участка до середины шестерни (Эпюра Т).

По эпюрам видно, что тихоходный вал малонагруженный и конструктивно принятые размеры вала обеспечивают многократный запас, поэтому расчет на сопротивление усталости выполнять нецелесообразно.

6. Проверочный расчет подшипников по заданному ресурсу работы [1, с.106]

Исходя из условий задания на курсовое проектирование и применяемой скорости вращения подшипников, расчёт на статическую и динамическую грузоподъёмности не является необходимым.

Производим расчёт подшипников на заданный ресурс.

Для быстроходной ступени применён подшипник 307, имеющий следующие характеристики: . Для тихоходной ступени применён подшипник 309, имеющий следующие характеристики: .

Вычислим эквивалентную динамическую нагрузку в наиболее нагруженной опоре:

,

где X,Y – коэффициенты, в соответствии с рекомендациями [1, с.106], при ;  X =1, Y=0,

Кб – коэффициент безопасности; Km – температурный коэффициент принимаем Кб = 1,2  в соответствии с рекомендациями табл. 7.4 [1, с.107], Кm = 1.

Тогда

,

Определяем скорректированный по уровню надёжности и условиям применения расчётный ресурс.

,

где а123 – коэффициенты долговечности и совместного влияния, принимаем а1=1 , а23=0,75 в соответствии с рекомендациями [1, с.108]; n –частота вращения вала.

Тогда

Для быстроходного вала:

,

Для тихоходного вала

.

Все подшипники удовлетворяют условию долговечности.


5. Расчёт соединений [2, с.168]

В соответствии с заданием и при условии достаточной соосности целесообразно использовать упругую втулочно-пальцевую муфту по ГОСТ 21424-93. Применение такой муфты позволяет компенсировать нежелательные усилия на приводном валу.

Проверка прочности шпоночных соединений.                             

Шпонки призматические со скруглёнными торцами. Размеры сечений шпонок и пазов и длинны шпонок - по ГОСТ 23360-78. Материал шпонок - Сталь 45 нормализованная.

Для тихоходного вала напряжение смятия определяем по формуле:

,

где T2 – крутящий момент на тихоходном валу, d – диаметр вала, h – высота шпонки, b – ширина шпонки, l – длинна шпонки, t1 – глубина паза.

Тогда

.

.

Для быстроходного вала напряжение смятия определяем по формуле:

,

где T1 – крутящий момент на быстроходном валу, d – диаметр вала, h – высота шпонки, b – ширина шпонки, l – длинна шпонки, t1 – глубина паза.

Тогда

.

Допускаемые напряжения смятия при стальной ступице

=110...125МПа, при чугунной  =90...120МПа. (материал полумуфт  Сталь 40Х).

Условие выполнено .

Список использованных источников

1. Конструирование узлов и деталей машин: Учебное пособие для машиностроительных спец. Вузов / П.Ф.Дунаев, О.П.Леликов. -7-е изд., перераб. и доп.-М.:Высш. шк., 2001-447 с., ил.

4. Курсовое проектирование деталей машин: Учеб. пособие для техникумов/ С. А. Чернавский, К. Н. Боков, И.М. Чернин и др.-2-е изд., перераб. и доп. - М.:Машиностроение , 1988. - 416 с.: ил.


 

А также другие работы, которые могут Вас заинтересовать

36903. Разработка приложений с разветвляющимися алгоритмами 359 KB
  Lbel1 Cption При х = Lbel2 Cption Функция вычисляется по формуле: Lbel3 Cption Получен результат Y = Lbel4 Cption Lbel5 Cption Лабораторная работа 2.Вариант 37 Text1 Text Text2...
36904. Изучение основных явлений поляризации света 483 KB
  Изучение основных явлений поляризации света. Цель работы: Получение и исследование поляризованного света и исследование свойств обыкновенных и необыкновенных лучей полученных с помощью двояко преломляющего кристалла. Принципиальная схема установки или её главных узлов: 1 упражнение: 2 упражнение: ИС – источник света; ИС – источник света; П – поляроид 1поляризатор; Д...
36905. Изучение физических явлений, лежащих в основе работы полупроводникового фотоэлемента с запирающим слоем, определение зависимости фототока от освещенности, снятие ширины запрещенной зоны полупроводника 713 KB
  Цель работы: Изучение физических явлений лежащих в основе работы полупроводникового фотоэлемента с запирающим слоем определение зависимости фототока от освещенности снятие ширины запрещенной зоны полупроводника. На рисунке выше Ес – энергия дна свободной зоны Ев – энергия потолка валентной зоны; Fм Fп – уровни Ферми металла и полупроводника Ам Ап – работы выхода электрона из металла и полупроводника. Если уровень Ферми изолированного металла Fм лежит выше уровня Ферми полупроводника Fп – т. Ам Ап то в первый момент их...
36906. Измерение холловской разности потенциалов в полулроводниковой пластине и определение концентрации, подвижности и знака носителей заряда, участвующих в токе 294.5 KB
  Эффект Холла в полупроводниках. Основные теоретические положения к данной работе основополагающие утверждения: формулы схематические рисунки: Эффект Холла заключается в возникновении поперечной разности потенциалов при пропускании тока через металлическую или полупроводниковую пластинку помещенную в магнитное поле направленное под некоторым углом к направлению тока. Классическая...
36907. Подтверждение боровской теории строения водородоподобных атомов 255.5 KB
  Основные теоретические положения к данной работе основополагающие утверждения: формулы схематические рисунки: В основе теории Бора лежат следующие постулаты: Первый постулат Бора постулат стационарных состояний: существуют некоторые стационарные состояния атома находясь в которых он не излучает энергии. Второй постулат Бора правило квантования орбит утверждает что в стационарном состоянии атома электрон двигаясь по круговой орбите должен иметь квантованные значения момента импульса удовлетворяющие условию где п = 1; 2;...
36908. Изучение процессов генерации и рекомбинации неравновесных носителей заряда в твердых телах при возбуждении их светом, экспериментальная проверка кинетики затухания рекомбинационной люминесценции при наличии центров захвата(ловушек) 658 KB
  Таблицы и графики Результаты измерений и расчетов: tc I1 мА I2 мА I3 мА I4 мА I5 мА Icp мА y = 10 0292 0284 0305 0293 0290 0293 0306 15 0264 0260 0265 0263 0261 0263 0379 20 0237 0238 0241 0243 0235 0239 0446 25 0220 0219 0216 0225 0228 0222 0501 30 0210 0209 0210 0203 0220 021 0543 35 0196 0192 0190 0195 0193 0193 061 40 0187 0185 0180 0179 0182 0183 0653 50 0170 0165 0165 0167 0170 0167 073 60 0158 0154 0156 0153 0154 0155 0796 70 0149 0147 0143 0144 0146...
36909. Кластерный анализ. Агломеративные методы 16.97 KB
  В качестве выбора нового расстояния между кластерами рассмотреть: 1Метод дальнего соседа 2Метод ближнего соседа. 3 Используем метод дальнего соседа. 4 Используем метод ближнего соседа. Решение поставленной задачи: 1Центрируем и нормируем: 2Рассчитаем матрицу расстояний: 1 2 3 4 5 6 Далее поскольку матрицы будут симметричными будут записаны полученные данные только над главной диагональю 3По методу...
36910. МОДЕЛИРОВАНИЕ ЗВЕНЬЕВ АВТОМАТИЧЕКСКИХ СИСТЕМ 346.5 KB
  1 Безынерционное звено Рис. 2 Интегрирующее звено Рис. 3 Апериодическое звено 1 порядка Рис. 4 Колебательное звено Переходные ht и передаточные Wp характеристики звеньев имеют вид: Безынерционное звено Wp=k Интегрирующее звено Wp=k p Апериодическое звено Wp=k Tp1 Колебательное звено Wp=k1 T2p22k2Tp1...
36911. Файлы и папки 185 KB
  Скопируйте этот файл с заданием в свою сетевую папку на studdc1 Загрузить программу Проводник. Создайте на своем рабочем столе структуру папок: Для этого щелкните правой кнопкой мыши для вызова контекстного меню выберите команду Создать Папку. Откройте текстовый файл и наберите текст: Переместите файл МОЙ ТЕКСТ в папку SUB. В любой папке доступной на Вашем компьютере выберите три файла вразброс используя для выделения клавишу Ctrl и скопируйте их в папку SUB.