49787

Визуализация численных методов. Решение обыкновенных дифференциальных уравнений

Курсовая

Информатика, кибернетика и программирование

Числовые методы позволяют построить интегральную кривую по точкам. В зависимости от того, сколько точек используется для расчета очередной точки интегральной кривой, все численные методы делятся на одношаговые и многошаговые. В нашем случае мы используем одношаговые численные методы.

Русский

2014-01-08

124 KB

2 чел.

Министерство РФ по связи и информатизации

ГОУ ВПО «Сибирский государственный университет

телекоммуникаций и информатики»

Уральский технический институт связи и информатики (филиал)

Кафедра физики, прикладной математики и информатики

КУРСОВАЯ РАБОТА

по информатике

ВАРИАНТ №14:

«Визуализация численных методов.

Решение обыкновенных дифференциальных уравнений».

Исполнитель:

студент гр. ОЕ-71

Паньшин А.А.

Руководитель:

Доцент Минина Е.Е

Екатеринбург

2008

Введение

Дифференциальными называются уравнения, связывающие независимую переменную, искомую функцию и ее производные. Решением ДУ называется функция, которая при подстановке в уравнение обращает его в тождество. Лишь очень немногие из таких уравнений удается решить без помощи вычислительной техники.

Если решить сложно или невозможно, используют численные методы, то есть приближенные значения. В числовых методах обязательно используют начальные условия, чтобы исключить константу.

Числовые методы позволяют построить интегральную кривую по точкам. В зависимости от того, сколько точек используется для расчета очередной точки интегральной кривой, все численные методы делятся на одношаговые и многошаговые. В нашем случае мы используем одношаговые численные методы.

Основные цели и задачи работы:

Цель моей работы- ознакомление, изучение основ системы программирования Microsoft  Visual  Basic и приобретение начальных навыков решение ДУ в Microsoft  Visual  Basic

1. Постановка задачи

Решить методами Эйлера и Эйлера модифицированного задачу Коши для дифференциального уравнения 1-го порядка 2*x*y*dx-(x+1)=0

на отрезке [0; 0.8] с шагом h=0.05 и начальным условием: Y(0) = 4. Общее решение: y=exp(2*x)*C/(x+1)^2

Ответ должен быть получен в виде таблицы результатов:

X

Y(1)

Y(2)

YT

X0

Y0(1)

Y0(2)

Y(X0)

X1

Y1(1)

Y1(2)

Y(X1)

Xk

Yk(1)

Yk(2)

Y(Xk)

Где: Y(1) - решение, полученное методом Эйлера, Y(2) – решение, полученное методом Эйлера модифицированного, YT – точное решение дифференциального уравнения.

Данные таблицы визуализировать на форме в виде графиков.

Перед вычислением последнего столбца таблицы результатов необходимо из начальных условий вычесть значение коэффициента c, используемого в общем решении.

2. Описание используемых методов

Метод Эйлера

 Этот  метод  называют   методом  Рунге-Кутта  первого   порядка точности.

Данный метод одношаговый. Табулирование функции происходит поочередно в каждой точке. Для расчета значения функции в очередном узле необходимо использовать значение функции в одном предыдущем узле.

       Для решения поставленной задачи выполняем следующие действия:

  •  Строим оси координат;
  •  Отмечаем точку A(0; 4) – первую точку интегральной кривой;
  •   Ищем угол наклона касательной к графику в точке A:

  •  Строим касательную AB в точке А под углом α0;
  •  Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 0 + 1 · 0.05 = 0.05;

  •  Проводим прямую x = x1 = 0.05  до пересечения с прямой AB, отмечаем точку B(x1; y1);
  •  Ищем  y1:

Из прямоугольного треугольника  ,

Δy = y1 y0,

 y1 y0= Δx· tg α0

Δx = x1 – x0 = h => y1 = y0 + h · (f(x0; y0)) = 4 + 0.05  f(0;4) = 4+0.05*0= 4

Следовательно, точка B имеет координаты (0.05; 4).

Следующую точку будем искать аналогичным способом по формуле расчета очередной точки интегральной функции:

(*)

Метод Эйлера модифицированный

Для уменьшения погрешности вычислений часто используется модифицированный метод Эйлера. Этот метод имеет так же следующие названия: метод Эйлера-Коши или метод Рунге-Кутта второго порядка точности.

Для решения поставленной задачи выполняем следующие действия:

  •  Строим оси координат;
  •  Отмечаем А(0; 4) – первую точку интегральной кривой;
  •  Ищем угол наклона касательной к графику в точке A:

  •  Строим касательную AB в точке А под углом α0;
  •  Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 0 + 0.05 · 1 = 0.05;

  •  Делим шаг интегрирования на два отрезка и отмечаем x1/2= x0 + h/2, проводим прямую из этой точки до прямой AB, отмечаем точку B(x1/2; y1/2);
  •  Ищем координаты В:

x1/2 = x0 + h/2 = 0 + 0.025 = 0.025

y1/2 = y0 + h/2 · f(x0; y0) = 4 +  0.025· 0= 4

Следовательно, точка B имеет координаты (0.025; 4);

Ищем угол наклона касательной к графику в точке B:

Tgα1=2*0.025*4/0.025+1=0.1951 рад. α1=0.1977

  •  Строим касательную BC в точке B под углом α1;
  •  Проводим прямую x1 = 0.05 до пересечения с прямой BC, отмечаем точку C с координатами (x1; y1);
  •  Ищем y1 :

y1 = y1/2 + h/2(f(x1/2;y1/2)) = 4 + 0.025 · 0.1977 = 4.0049

Следовательно, точка C имеет координаты (0.05; 4.0049).

yi+1 = yi + hf(xi + h/2, yi + h/2 ∙ f(xi, yi))

3. Блок-схемы основных процедур.

Блок-схема функции

Блок-схема метода Эйлера.

Блок-схема методом Эйлера модифицированным.

 

Блок-схема графика.

Блок схема программы.

4. Формы программы.

Исходный вид формы программы.

Итоговый вид формы программы.

5. Листинг программы на языке Visual Basic.

Dim x(50) As Single, y(50) As Single, k(50) As Single, z(50) As Single, p(50) As Single

Private y0 As Single

Private x0 As Single

Private xk As Single

Private C As Single

Function f(t As Single, q As Single) As Single

f = 2 * t * q / t + 1

End Function

Private Sub Command2_Click()

x0 = Val(Text1.Text)

xk = Val(Text2.Text)

y(0) = Val(Text4.Text)

h = Val(Text3.Text)

p(0) = y(0)

z(0) = y(0)

n = Round((xk - x0) / h)

C = (y(0) * (x0 + 1) ^ 2) / Exp(2 * x0)

MSFlexGrid1.Rows = n + 2

MSFlexGrid1.Cols = 4

MSFlexGrid1.TextMatrix(0, 0) = "X"

MSFlexGrid1.TextMatrix(0, 1) = "P"

MSFlexGrid1.TextMatrix(0, 2) = "Yэ"

MSFlexGrid1.TextMatrix(0, 3) = "Yэм"

Max = y(0)

Min = y(0)

For i = 1 To n

x(i) = x0 + i * h

p(i) = Round(C * (x(i) * x(i) * x(i)) )

y(i + 1) = Round(y(i) + f(x(i), y(i)) * h )

z(i + 1) = Round(z(i) + f(x(i) + h / 2, z(i) + h / 2 * f(x(i), z(i))) * h)

If y(i) > Max Then Max = y(i)

If y(i) < Min Then Min = y(i)

MSFlexGrid1.TextMatrix(i + 1, 0) = Str(x(i))

MSFlexGrid1.TextMatrix(i + 1, 1) = Str(p(i))

MSFlexGrid1.TextMatrix(i + 1, 2) = Str(y(i))

MSFlexGrid1.TextMatrix(i + 1, 3) = Str(z(i))

Next i

Picture1.Cls

kx = (Picture1.Width - 1200) / (xk - x0)

ky = (Picture1.Height - 1200) / (Max - Min)

Label4.Caption = Str(Min)

Label5.Caption = Str(Max)

Label6.Caption = Str(x0)

Label7.Caption = Str(xk)

For i = 0 To n - 1

z1 = Round(720 + (x(i) - x0) * kx)

z2 = Round(5400 - (y(i) - Min) * ky)

z3 = Round(720 + (x(i + 1) - x0) * kx)

z4 = Round(5400 - (y(i + 1) - Min) * ky)

z5 = Round(5400 - (p(i) - Min) * ky)

z6 = Round(5400 - (p(i + 1) - Min) * ky)

z7 = Round(5400 - (z(i) - Min) * ky)

z8 = Round(5400 - (z(i + 1) - Min) * ky)

Picture1.Line (z1, z7)-(z3, z8), vbRed

Picture1.Line (z1, z2)-(z3, z4), vbGreen

Picture1.Line (z1, z5)-(z3, z6), vbBlue

Next i

End Sub

Private Sub Command1_Click()

End

End Sub

6. Решение задачи в MathCAD.

Заключение

В данной курсовой работе я изучил численные методы решения задачи

По окончании работы я научился работать в  среде программирования Visual Basic 6.0. и MathCad.

Я, в своей курсовой работе решал уравнение двумя методами: методом Эйлера и методом Эйлера модифицированного.Я выяснил, что метод Эйлера модифицированный имеет меньшую погрешность, чем метод Эйлера.


Eiler

i=0,…,N-1

x(i)=x0+h*i

yi=yi-1+h*f(xi-1,yi-1)

end

Eiler mod

=(xk-x0)/N

i=0,…,N-1

x(i)=x0+h*i

Yi=y(i-2)+h*F(x(i-2)+h/2,y(i-2)+h/2*F(x(i-2), y(i-2))

end

end

F=2*g*m/g+1

F(g,m)

Graphic

x0, xk, y0, h

N=Round((xk-x0)/h)

MSFlexGrid1.Rows=n+2

MSFlexGrid1.TextMatrix(0,0)=”X”

MSFlexGrid1.TextMatrix(0,1)=”YЭ

MSFlexGrid1.TextMatrix(0,2)=”YЭМ

MSFlexGrid1.TextMatrix(0,3)=”P”

x(0)=x0

y(0)=y0

c=y0*(x0+1)^2/exp(2*x0)

y1(i+1)=y1(i)+h*F(x(i),y1(i))

For i=0 to N

x(i)=x0+h*i

Z(0)=y0

y2(i+1)=y2(i)+h*F(x(i)+h/2,y2(i)++h*F(x(i),y2(i))/2

Y(i)=exp(2*x(i)) *C/(x(i)+1)^2

min=Y(0)

For i=0 to N

Y(i)<min

min=y(i)

max=Y(0)

For i=0 to N

Y(i)>max

max=Y(i)

kx = (Picture1.Width - 1200) / (xk - x0)

ky = (Picture1.Height - 1200) / (Max - Min)

нет

да

нетт

да

p(0)=y0

For i=0 to N-1

p1=720+(x(i)-x0)*kx

p2=5400-(y1(i)-min)*ky

p3=720+(x(i+1)-x0)*kx

p4=5400-(Y(i+1)-min)*ky

p5=5400+(p(i)-min)*ky

p6=5400-(p(i+1)-min)*ky

p7=5400-(z(i)-min)*ky

P8=5400-(z(i+1)-min)*ky

Picture1.Line(p1,p2)-(p5,p6),vbRed

Picture1.Line(p1,p3)-(p5,p7),vbGreen

Picture1.Line(p1,p4)-(p5,p8),vbBlue

end

Programma

x0, xk, y0, h

h=(xk-x0)/N

c=y(0)*(x0+1)^2/exp(2*x0)

i=0,…,N

x(i)=x0+h*i

y1(i+1)=y1(i)+h*F(x(i),y1(i))

y2(i+1)=y2(i)+h*F(x(i)+h/2,y2(i)++h*F(x(i),y2(i))/2

Y(i)=( exp(2*x(i)) *C/(x(i)+1)^2

x(i),y1(i),y2(i),Y(i)

end


 

А также другие работы, которые могут Вас заинтересовать

11912. Оценка качества речи, передаваемой по каналу GSM 704 KB
  Лабораторная работа по курсу Проектирование информационных и телекоммуникационных систем Оценка качества речи передаваемой по каналу GSM Содержание Лабораторная работа Содержание Задание Теорети...
11913. Изучение электронного осциллографа 717.55 KB
  Отчёт по лабораторной работе № 1 Изучение электронного осциллографа Цель работы. Ознакомление с устройством электронного осциллографа; изучение с помощью этого прибора процессов в простых электрических цепях. Приборы и оборудование. 1. Электронный о
11914. Изучение свободных электромагнитных колебаний в LRCконтуре 327.5 KB
  Отчет по лабораторной работе №4 14 Изучение свободных электромагнитных колебаний в LRCконтуре. Выполнили: студенты 1.Теоретическое введение. Из определения LRC: где коэффициент затухания. собственная частота контура. При малые затухания. где ...
11915. Измерение коэффициента взаимной индукции в переменном поле 145.5 KB
  Лабораторная работа N 9 Измерение коэффициента взаимной индукции в переменном поле 1 Цель работы: Измерение коэффициента взаимной индукции коаксиальных катушек на основе закона электромагнитной индукции. 2 Теоретическая часть: Явление взаимной индукции заклю
11916. Определение отношения заряда электрона к массе методом магнетрона 569.5 KB
  Лабораторная работа № 12 Определение отношения заряда электрона к массе методом магнетрона. Цель работы: Цель работы: Изучение движения электронов во взаимно перпендикулярных электрическом и магнитном полях в магнетроне определение по параметрам этого движен
11917. Изучение свободных электромагнитных колебаний в LCR контуре 278 KB
  Лабораторная работа № 14 Изучение свободных электромагнитных колебаний в LCR контуре. Цель работы: Цель работы: Изучение характеристик свободного колебательного процесса возбуждаемого импульсным воздействием в простом LCR контуре. Приборы и оборудование: ...
11918. Определение термоэмиссионных характеристик вольфрама 321.5 KB
  Лабораторная работа №6 Определение термоэмиссионных характеристик вольфрама. Задание 1. Определение температуры катода. Соберите установку из источника питания и вакуумного диода. Измеряя ток накала от 1.3 до 1.7 А через каждые 0.1 А измерьте соответствующие знач...
11919. Получение вольт-амперной характеристики вакуумного диода и определение удельного заряда электрона 351 KB
  1. ТЕОРИЯ РАБОТЫ Цель работы получение вольтамперной характеристики вакуумного диода и определение удельного заряда электрона. При достаточно малых анодных напряжениях при кот. не достигается ток насыщения зависимость силы тока от анодного напряжения в вакуумном...
11920. Определение термоэмиссионных характеристик вольфрама. 701 KB
  Лабораторная работа № 6 Определение термоэмиссионных характеристик вольфрама. Цель работы: Цель работы: экспериментальное изучение характеристик вакуумного диода и определение работы выхода электронов из вольфрама. Приборы и оборудование: 1. Модуль Ф