49787

Визуализация численных методов. Решение обыкновенных дифференциальных уравнений

Курсовая

Информатика, кибернетика и программирование

Числовые методы позволяют построить интегральную кривую по точкам. В зависимости от того, сколько точек используется для расчета очередной точки интегральной кривой, все численные методы делятся на одношаговые и многошаговые. В нашем случае мы используем одношаговые численные методы.

Русский

2014-01-08

124 KB

2 чел.

Министерство РФ по связи и информатизации

ГОУ ВПО «Сибирский государственный университет

телекоммуникаций и информатики»

Уральский технический институт связи и информатики (филиал)

Кафедра физики, прикладной математики и информатики

КУРСОВАЯ РАБОТА

по информатике

ВАРИАНТ №14:

«Визуализация численных методов.

Решение обыкновенных дифференциальных уравнений».

Исполнитель:

студент гр. ОЕ-71

Паньшин А.А.

Руководитель:

Доцент Минина Е.Е

Екатеринбург

2008

Введение

Дифференциальными называются уравнения, связывающие независимую переменную, искомую функцию и ее производные. Решением ДУ называется функция, которая при подстановке в уравнение обращает его в тождество. Лишь очень немногие из таких уравнений удается решить без помощи вычислительной техники.

Если решить сложно или невозможно, используют численные методы, то есть приближенные значения. В числовых методах обязательно используют начальные условия, чтобы исключить константу.

Числовые методы позволяют построить интегральную кривую по точкам. В зависимости от того, сколько точек используется для расчета очередной точки интегральной кривой, все численные методы делятся на одношаговые и многошаговые. В нашем случае мы используем одношаговые численные методы.

Основные цели и задачи работы:

Цель моей работы- ознакомление, изучение основ системы программирования Microsoft  Visual  Basic и приобретение начальных навыков решение ДУ в Microsoft  Visual  Basic

1. Постановка задачи

Решить методами Эйлера и Эйлера модифицированного задачу Коши для дифференциального уравнения 1-го порядка 2*x*y*dx-(x+1)=0

на отрезке [0; 0.8] с шагом h=0.05 и начальным условием: Y(0) = 4. Общее решение: y=exp(2*x)*C/(x+1)^2

Ответ должен быть получен в виде таблицы результатов:

X

Y(1)

Y(2)

YT

X0

Y0(1)

Y0(2)

Y(X0)

X1

Y1(1)

Y1(2)

Y(X1)

Xk

Yk(1)

Yk(2)

Y(Xk)

Где: Y(1) - решение, полученное методом Эйлера, Y(2) – решение, полученное методом Эйлера модифицированного, YT – точное решение дифференциального уравнения.

Данные таблицы визуализировать на форме в виде графиков.

Перед вычислением последнего столбца таблицы результатов необходимо из начальных условий вычесть значение коэффициента c, используемого в общем решении.

2. Описание используемых методов

Метод Эйлера

 Этот  метод  называют   методом  Рунге-Кутта  первого   порядка точности.

Данный метод одношаговый. Табулирование функции происходит поочередно в каждой точке. Для расчета значения функции в очередном узле необходимо использовать значение функции в одном предыдущем узле.

       Для решения поставленной задачи выполняем следующие действия:

  •  Строим оси координат;
  •  Отмечаем точку A(0; 4) – первую точку интегральной кривой;
  •   Ищем угол наклона касательной к графику в точке A:

  •  Строим касательную AB в точке А под углом α0;
  •  Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 0 + 1 · 0.05 = 0.05;

  •  Проводим прямую x = x1 = 0.05  до пересечения с прямой AB, отмечаем точку B(x1; y1);
  •  Ищем  y1:

Из прямоугольного треугольника  ,

Δy = y1 y0,

 y1 y0= Δx· tg α0

Δx = x1 – x0 = h => y1 = y0 + h · (f(x0; y0)) = 4 + 0.05  f(0;4) = 4+0.05*0= 4

Следовательно, точка B имеет координаты (0.05; 4).

Следующую точку будем искать аналогичным способом по формуле расчета очередной точки интегральной функции:

(*)

Метод Эйлера модифицированный

Для уменьшения погрешности вычислений часто используется модифицированный метод Эйлера. Этот метод имеет так же следующие названия: метод Эйлера-Коши или метод Рунге-Кутта второго порядка точности.

Для решения поставленной задачи выполняем следующие действия:

  •  Строим оси координат;
  •  Отмечаем А(0; 4) – первую точку интегральной кривой;
  •  Ищем угол наклона касательной к графику в точке A:

  •  Строим касательную AB в точке А под углом α0;
  •  Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 0 + 0.05 · 1 = 0.05;

  •  Делим шаг интегрирования на два отрезка и отмечаем x1/2= x0 + h/2, проводим прямую из этой точки до прямой AB, отмечаем точку B(x1/2; y1/2);
  •  Ищем координаты В:

x1/2 = x0 + h/2 = 0 + 0.025 = 0.025

y1/2 = y0 + h/2 · f(x0; y0) = 4 +  0.025· 0= 4

Следовательно, точка B имеет координаты (0.025; 4);

Ищем угол наклона касательной к графику в точке B:

Tgα1=2*0.025*4/0.025+1=0.1951 рад. α1=0.1977

  •  Строим касательную BC в точке B под углом α1;
  •  Проводим прямую x1 = 0.05 до пересечения с прямой BC, отмечаем точку C с координатами (x1; y1);
  •  Ищем y1 :

y1 = y1/2 + h/2(f(x1/2;y1/2)) = 4 + 0.025 · 0.1977 = 4.0049

Следовательно, точка C имеет координаты (0.05; 4.0049).

yi+1 = yi + hf(xi + h/2, yi + h/2 ∙ f(xi, yi))

3. Блок-схемы основных процедур.

Блок-схема функции

Блок-схема метода Эйлера.

Блок-схема методом Эйлера модифицированным.

 

Блок-схема графика.

Блок схема программы.

4. Формы программы.

Исходный вид формы программы.

Итоговый вид формы программы.

5. Листинг программы на языке Visual Basic.

Dim x(50) As Single, y(50) As Single, k(50) As Single, z(50) As Single, p(50) As Single

Private y0 As Single

Private x0 As Single

Private xk As Single

Private C As Single

Function f(t As Single, q As Single) As Single

f = 2 * t * q / t + 1

End Function

Private Sub Command2_Click()

x0 = Val(Text1.Text)

xk = Val(Text2.Text)

y(0) = Val(Text4.Text)

h = Val(Text3.Text)

p(0) = y(0)

z(0) = y(0)

n = Round((xk - x0) / h)

C = (y(0) * (x0 + 1) ^ 2) / Exp(2 * x0)

MSFlexGrid1.Rows = n + 2

MSFlexGrid1.Cols = 4

MSFlexGrid1.TextMatrix(0, 0) = "X"

MSFlexGrid1.TextMatrix(0, 1) = "P"

MSFlexGrid1.TextMatrix(0, 2) = "Yэ"

MSFlexGrid1.TextMatrix(0, 3) = "Yэм"

Max = y(0)

Min = y(0)

For i = 1 To n

x(i) = x0 + i * h

p(i) = Round(C * (x(i) * x(i) * x(i)) )

y(i + 1) = Round(y(i) + f(x(i), y(i)) * h )

z(i + 1) = Round(z(i) + f(x(i) + h / 2, z(i) + h / 2 * f(x(i), z(i))) * h)

If y(i) > Max Then Max = y(i)

If y(i) < Min Then Min = y(i)

MSFlexGrid1.TextMatrix(i + 1, 0) = Str(x(i))

MSFlexGrid1.TextMatrix(i + 1, 1) = Str(p(i))

MSFlexGrid1.TextMatrix(i + 1, 2) = Str(y(i))

MSFlexGrid1.TextMatrix(i + 1, 3) = Str(z(i))

Next i

Picture1.Cls

kx = (Picture1.Width - 1200) / (xk - x0)

ky = (Picture1.Height - 1200) / (Max - Min)

Label4.Caption = Str(Min)

Label5.Caption = Str(Max)

Label6.Caption = Str(x0)

Label7.Caption = Str(xk)

For i = 0 To n - 1

z1 = Round(720 + (x(i) - x0) * kx)

z2 = Round(5400 - (y(i) - Min) * ky)

z3 = Round(720 + (x(i + 1) - x0) * kx)

z4 = Round(5400 - (y(i + 1) - Min) * ky)

z5 = Round(5400 - (p(i) - Min) * ky)

z6 = Round(5400 - (p(i + 1) - Min) * ky)

z7 = Round(5400 - (z(i) - Min) * ky)

z8 = Round(5400 - (z(i + 1) - Min) * ky)

Picture1.Line (z1, z7)-(z3, z8), vbRed

Picture1.Line (z1, z2)-(z3, z4), vbGreen

Picture1.Line (z1, z5)-(z3, z6), vbBlue

Next i

End Sub

Private Sub Command1_Click()

End

End Sub

6. Решение задачи в MathCAD.

Заключение

В данной курсовой работе я изучил численные методы решения задачи

По окончании работы я научился работать в  среде программирования Visual Basic 6.0. и MathCad.

Я, в своей курсовой работе решал уравнение двумя методами: методом Эйлера и методом Эйлера модифицированного.Я выяснил, что метод Эйлера модифицированный имеет меньшую погрешность, чем метод Эйлера.


Eiler

i=0,…,N-1

x(i)=x0+h*i

yi=yi-1+h*f(xi-1,yi-1)

end

Eiler mod

=(xk-x0)/N

i=0,…,N-1

x(i)=x0+h*i

Yi=y(i-2)+h*F(x(i-2)+h/2,y(i-2)+h/2*F(x(i-2), y(i-2))

end

end

F=2*g*m/g+1

F(g,m)

Graphic

x0, xk, y0, h

N=Round((xk-x0)/h)

MSFlexGrid1.Rows=n+2

MSFlexGrid1.TextMatrix(0,0)=”X”

MSFlexGrid1.TextMatrix(0,1)=”YЭ

MSFlexGrid1.TextMatrix(0,2)=”YЭМ

MSFlexGrid1.TextMatrix(0,3)=”P”

x(0)=x0

y(0)=y0

c=y0*(x0+1)^2/exp(2*x0)

y1(i+1)=y1(i)+h*F(x(i),y1(i))

For i=0 to N

x(i)=x0+h*i

Z(0)=y0

y2(i+1)=y2(i)+h*F(x(i)+h/2,y2(i)++h*F(x(i),y2(i))/2

Y(i)=exp(2*x(i)) *C/(x(i)+1)^2

min=Y(0)

For i=0 to N

Y(i)<min

min=y(i)

max=Y(0)

For i=0 to N

Y(i)>max

max=Y(i)

kx = (Picture1.Width - 1200) / (xk - x0)

ky = (Picture1.Height - 1200) / (Max - Min)

нет

да

нетт

да

p(0)=y0

For i=0 to N-1

p1=720+(x(i)-x0)*kx

p2=5400-(y1(i)-min)*ky

p3=720+(x(i+1)-x0)*kx

p4=5400-(Y(i+1)-min)*ky

p5=5400+(p(i)-min)*ky

p6=5400-(p(i+1)-min)*ky

p7=5400-(z(i)-min)*ky

P8=5400-(z(i+1)-min)*ky

Picture1.Line(p1,p2)-(p5,p6),vbRed

Picture1.Line(p1,p3)-(p5,p7),vbGreen

Picture1.Line(p1,p4)-(p5,p8),vbBlue

end

Programma

x0, xk, y0, h

h=(xk-x0)/N

c=y(0)*(x0+1)^2/exp(2*x0)

i=0,…,N

x(i)=x0+h*i

y1(i+1)=y1(i)+h*F(x(i),y1(i))

y2(i+1)=y2(i)+h*F(x(i)+h/2,y2(i)++h*F(x(i),y2(i))/2

Y(i)=( exp(2*x(i)) *C/(x(i)+1)^2

x(i),y1(i),y2(i),Y(i)

end


 

А также другие работы, которые могут Вас заинтересовать

14179. Обзор рынка страхования в Российской Федерации на современном этапе, агрострахование 674.5 KB
  Содержание Введение 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ СТРАХОВАНИЯ 1.1 Сущность и функции страхования 1.2 Обзор рынка страхования в Российской Федерации на современном этапе 1.3 Правовое регулирование в сфере страхования 2. Организационноэкономическая характеристика хозя...
14180. ОБЩИЕ ТРЕБОВАНИЯ К РЕКЛАМЕ 114.96 KB
  ОБЩИЕ ТРЕБОВАНИЯ К РЕКЛАМЕ ОГЛАВЛЕНИЕ Ведение Глава 1. Основные требования к рекламе. Ненадлежащая реклама 1.1. Понятие рекламы как объекта информационных правоотношений 1.2. Перечень общих требований к рекламе 1.3. Недобросовестная и недостоверная реклама 1.4. О...
14181. Особенности, формы и предпосылки развития государственного предпринимательства Таймырский округ 522.5 KB
  Особенности развития предпринимательской деятельности Администрации муниципального образования (на примере Таймырского Долгано-Ненецкого муниципального района). Анализ предпринимательской деятельности Администрации Таймырского Долгано-Ненецкого муниципального района
14182. Оценка предпринимательских рисков и методы их снижения на примере ООО «ТД «Евронорд» 460 KB
  Оценка предпринимательских рисков и методы их снижения на примере ООО ТД Евронорд Содержание Введение 1 Институциальные аспекты управления риском 1.1 Сущность содержание и виды рисков 1.2 Приемы и методы управления риском 1.3 Процесс управления рисками на п...
14183. Предоставление земельного участка для строительства в населенных пунктах 279.5 KB
  Оглавление [1] Введение [2] Глава 1. Теоретические и правовые основы регулирования отношений по предоставлению земельного участка в аренду [2.1] 1. Общая характеристика объекта земельных правоотношений по предоставлению земельных у
14184. Принципы гражданского процессуального права 399.5 KB
  Объектом исследования выступают принципы гражданско-процессуального права. Предметом работы выступают нормы гражданско-процессуального законодательства. Цель работы выступает анализ принципов гражданско-процессуального права
14185. Пути и методы снижения рисков в предпринимательской деятельности на примере транспортного предприятия 957 KB
  Реферат Объём пояснительной записки 104 стр. рис.30 табл.34 источников 42. Тема: Пути и методы снижения рисков в предпринимательской деятельности на примере ТПЧУП СифудСеврис Ключевые слова: риск управление рисками минимизация рисков финан
14186. Пути повышения экономической эффективности производства овощеводческой продукции в СПК «Тепличный» 377.5 KB
  66 Дипломная работа Пути повышения экономической эффективности производства овощеводческой продукции в СПК Тепличный г. Волгограда Содержание Введение 1.Теоретические основы повышения эффективности производства овощеводческой продукции ...
14187. Развитие малого и среднего бизнеса Ямало-Ненецком автономном округе на 2008 – 2010 192.5 KB
  СОДЕРЖАНИЕ Введение Глава 1. Деятельность органов государственной власти и местного самоуправления по поддержке малого и среднего предпринимательства на территории ЯмалоНенецкого автономного округа 1.1 Система поддержки и регулиро