49787

Визуализация численных методов. Решение обыкновенных дифференциальных уравнений

Курсовая

Информатика, кибернетика и программирование

Числовые методы позволяют построить интегральную кривую по точкам. В зависимости от того, сколько точек используется для расчета очередной точки интегральной кривой, все численные методы делятся на одношаговые и многошаговые. В нашем случае мы используем одношаговые численные методы.

Русский

2014-01-08

124 KB

3 чел.

Министерство РФ по связи и информатизации

ГОУ ВПО «Сибирский государственный университет

телекоммуникаций и информатики»

Уральский технический институт связи и информатики (филиал)

Кафедра физики, прикладной математики и информатики

КУРСОВАЯ РАБОТА

по информатике

ВАРИАНТ №14:

«Визуализация численных методов.

Решение обыкновенных дифференциальных уравнений».

Исполнитель:

студент гр. ОЕ-71

Паньшин А.А.

Руководитель:

Доцент Минина Е.Е

Екатеринбург

2008

Введение

Дифференциальными называются уравнения, связывающие независимую переменную, искомую функцию и ее производные. Решением ДУ называется функция, которая при подстановке в уравнение обращает его в тождество. Лишь очень немногие из таких уравнений удается решить без помощи вычислительной техники.

Если решить сложно или невозможно, используют численные методы, то есть приближенные значения. В числовых методах обязательно используют начальные условия, чтобы исключить константу.

Числовые методы позволяют построить интегральную кривую по точкам. В зависимости от того, сколько точек используется для расчета очередной точки интегральной кривой, все численные методы делятся на одношаговые и многошаговые. В нашем случае мы используем одношаговые численные методы.

Основные цели и задачи работы:

Цель моей работы- ознакомление, изучение основ системы программирования Microsoft  Visual  Basic и приобретение начальных навыков решение ДУ в Microsoft  Visual  Basic

1. Постановка задачи

Решить методами Эйлера и Эйлера модифицированного задачу Коши для дифференциального уравнения 1-го порядка 2*x*y*dx-(x+1)=0

на отрезке [0; 0.8] с шагом h=0.05 и начальным условием: Y(0) = 4. Общее решение: y=exp(2*x)*C/(x+1)^2

Ответ должен быть получен в виде таблицы результатов:

X

Y(1)

Y(2)

YT

X0

Y0(1)

Y0(2)

Y(X0)

X1

Y1(1)

Y1(2)

Y(X1)

Xk

Yk(1)

Yk(2)

Y(Xk)

Где: Y(1) - решение, полученное методом Эйлера, Y(2) – решение, полученное методом Эйлера модифицированного, YT – точное решение дифференциального уравнения.

Данные таблицы визуализировать на форме в виде графиков.

Перед вычислением последнего столбца таблицы результатов необходимо из начальных условий вычесть значение коэффициента c, используемого в общем решении.

2. Описание используемых методов

Метод Эйлера

 Этот  метод  называют   методом  Рунге-Кутта  первого   порядка точности.

Данный метод одношаговый. Табулирование функции происходит поочередно в каждой точке. Для расчета значения функции в очередном узле необходимо использовать значение функции в одном предыдущем узле.

       Для решения поставленной задачи выполняем следующие действия:

  •  Строим оси координат;
  •  Отмечаем точку A(0; 4) – первую точку интегральной кривой;
  •   Ищем угол наклона касательной к графику в точке A:

  •  Строим касательную AB в точке А под углом α0;
  •  Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 0 + 1 · 0.05 = 0.05;

  •  Проводим прямую x = x1 = 0.05  до пересечения с прямой AB, отмечаем точку B(x1; y1);
  •  Ищем  y1:

Из прямоугольного треугольника  ,

Δy = y1 y0,

 y1 y0= Δx· tg α0

Δx = x1 – x0 = h => y1 = y0 + h · (f(x0; y0)) = 4 + 0.05  f(0;4) = 4+0.05*0= 4

Следовательно, точка B имеет координаты (0.05; 4).

Следующую точку будем искать аналогичным способом по формуле расчета очередной точки интегральной функции:

(*)

Метод Эйлера модифицированный

Для уменьшения погрешности вычислений часто используется модифицированный метод Эйлера. Этот метод имеет так же следующие названия: метод Эйлера-Коши или метод Рунге-Кутта второго порядка точности.

Для решения поставленной задачи выполняем следующие действия:

  •  Строим оси координат;
  •  Отмечаем А(0; 4) – первую точку интегральной кривой;
  •  Ищем угол наклона касательной к графику в точке A:

  •  Строим касательную AB в точке А под углом α0;
  •  Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 0 + 0.05 · 1 = 0.05;

  •  Делим шаг интегрирования на два отрезка и отмечаем x1/2= x0 + h/2, проводим прямую из этой точки до прямой AB, отмечаем точку B(x1/2; y1/2);
  •  Ищем координаты В:

x1/2 = x0 + h/2 = 0 + 0.025 = 0.025

y1/2 = y0 + h/2 · f(x0; y0) = 4 +  0.025· 0= 4

Следовательно, точка B имеет координаты (0.025; 4);

Ищем угол наклона касательной к графику в точке B:

Tgα1=2*0.025*4/0.025+1=0.1951 рад. α1=0.1977

  •  Строим касательную BC в точке B под углом α1;
  •  Проводим прямую x1 = 0.05 до пересечения с прямой BC, отмечаем точку C с координатами (x1; y1);
  •  Ищем y1 :

y1 = y1/2 + h/2(f(x1/2;y1/2)) = 4 + 0.025 · 0.1977 = 4.0049

Следовательно, точка C имеет координаты (0.05; 4.0049).

yi+1 = yi + hf(xi + h/2, yi + h/2 ∙ f(xi, yi))

3. Блок-схемы основных процедур.

Блок-схема функции

Блок-схема метода Эйлера.

Блок-схема методом Эйлера модифицированным.

 

Блок-схема графика.

Блок схема программы.

4. Формы программы.

Исходный вид формы программы.

Итоговый вид формы программы.

5. Листинг программы на языке Visual Basic.

Dim x(50) As Single, y(50) As Single, k(50) As Single, z(50) As Single, p(50) As Single

Private y0 As Single

Private x0 As Single

Private xk As Single

Private C As Single

Function f(t As Single, q As Single) As Single

f = 2 * t * q / t + 1

End Function

Private Sub Command2_Click()

x0 = Val(Text1.Text)

xk = Val(Text2.Text)

y(0) = Val(Text4.Text)

h = Val(Text3.Text)

p(0) = y(0)

z(0) = y(0)

n = Round((xk - x0) / h)

C = (y(0) * (x0 + 1) ^ 2) / Exp(2 * x0)

MSFlexGrid1.Rows = n + 2

MSFlexGrid1.Cols = 4

MSFlexGrid1.TextMatrix(0, 0) = "X"

MSFlexGrid1.TextMatrix(0, 1) = "P"

MSFlexGrid1.TextMatrix(0, 2) = "Yэ"

MSFlexGrid1.TextMatrix(0, 3) = "Yэм"

Max = y(0)

Min = y(0)

For i = 1 To n

x(i) = x0 + i * h

p(i) = Round(C * (x(i) * x(i) * x(i)) )

y(i + 1) = Round(y(i) + f(x(i), y(i)) * h )

z(i + 1) = Round(z(i) + f(x(i) + h / 2, z(i) + h / 2 * f(x(i), z(i))) * h)

If y(i) > Max Then Max = y(i)

If y(i) < Min Then Min = y(i)

MSFlexGrid1.TextMatrix(i + 1, 0) = Str(x(i))

MSFlexGrid1.TextMatrix(i + 1, 1) = Str(p(i))

MSFlexGrid1.TextMatrix(i + 1, 2) = Str(y(i))

MSFlexGrid1.TextMatrix(i + 1, 3) = Str(z(i))

Next i

Picture1.Cls

kx = (Picture1.Width - 1200) / (xk - x0)

ky = (Picture1.Height - 1200) / (Max - Min)

Label4.Caption = Str(Min)

Label5.Caption = Str(Max)

Label6.Caption = Str(x0)

Label7.Caption = Str(xk)

For i = 0 To n - 1

z1 = Round(720 + (x(i) - x0) * kx)

z2 = Round(5400 - (y(i) - Min) * ky)

z3 = Round(720 + (x(i + 1) - x0) * kx)

z4 = Round(5400 - (y(i + 1) - Min) * ky)

z5 = Round(5400 - (p(i) - Min) * ky)

z6 = Round(5400 - (p(i + 1) - Min) * ky)

z7 = Round(5400 - (z(i) - Min) * ky)

z8 = Round(5400 - (z(i + 1) - Min) * ky)

Picture1.Line (z1, z7)-(z3, z8), vbRed

Picture1.Line (z1, z2)-(z3, z4), vbGreen

Picture1.Line (z1, z5)-(z3, z6), vbBlue

Next i

End Sub

Private Sub Command1_Click()

End

End Sub

6. Решение задачи в MathCAD.

Заключение

В данной курсовой работе я изучил численные методы решения задачи

По окончании работы я научился работать в  среде программирования Visual Basic 6.0. и MathCad.

Я, в своей курсовой работе решал уравнение двумя методами: методом Эйлера и методом Эйлера модифицированного.Я выяснил, что метод Эйлера модифицированный имеет меньшую погрешность, чем метод Эйлера.


Eiler

i=0,…,N-1

x(i)=x0+h*i

yi=yi-1+h*f(xi-1,yi-1)

end

Eiler mod

=(xk-x0)/N

i=0,…,N-1

x(i)=x0+h*i

Yi=y(i-2)+h*F(x(i-2)+h/2,y(i-2)+h/2*F(x(i-2), y(i-2))

end

end

F=2*g*m/g+1

F(g,m)

Graphic

x0, xk, y0, h

N=Round((xk-x0)/h)

MSFlexGrid1.Rows=n+2

MSFlexGrid1.TextMatrix(0,0)=”X”

MSFlexGrid1.TextMatrix(0,1)=”YЭ

MSFlexGrid1.TextMatrix(0,2)=”YЭМ

MSFlexGrid1.TextMatrix(0,3)=”P”

x(0)=x0

y(0)=y0

c=y0*(x0+1)^2/exp(2*x0)

y1(i+1)=y1(i)+h*F(x(i),y1(i))

For i=0 to N

x(i)=x0+h*i

Z(0)=y0

y2(i+1)=y2(i)+h*F(x(i)+h/2,y2(i)++h*F(x(i),y2(i))/2

Y(i)=exp(2*x(i)) *C/(x(i)+1)^2

min=Y(0)

For i=0 to N

Y(i)<min

min=y(i)

max=Y(0)

For i=0 to N

Y(i)>max

max=Y(i)

kx = (Picture1.Width - 1200) / (xk - x0)

ky = (Picture1.Height - 1200) / (Max - Min)

нет

да

нетт

да

p(0)=y0

For i=0 to N-1

p1=720+(x(i)-x0)*kx

p2=5400-(y1(i)-min)*ky

p3=720+(x(i+1)-x0)*kx

p4=5400-(Y(i+1)-min)*ky

p5=5400+(p(i)-min)*ky

p6=5400-(p(i+1)-min)*ky

p7=5400-(z(i)-min)*ky

P8=5400-(z(i+1)-min)*ky

Picture1.Line(p1,p2)-(p5,p6),vbRed

Picture1.Line(p1,p3)-(p5,p7),vbGreen

Picture1.Line(p1,p4)-(p5,p8),vbBlue

end

Programma

x0, xk, y0, h

h=(xk-x0)/N

c=y(0)*(x0+1)^2/exp(2*x0)

i=0,…,N

x(i)=x0+h*i

y1(i+1)=y1(i)+h*F(x(i),y1(i))

y2(i+1)=y2(i)+h*F(x(i)+h/2,y2(i)++h*F(x(i),y2(i))/2

Y(i)=( exp(2*x(i)) *C/(x(i)+1)^2

x(i),y1(i),y2(i),Y(i)

end


 

А также другие работы, которые могут Вас заинтересовать

617. Вычисление сумм и произведений методом накопления 50 KB
  Вычислить значение функции, содержащее алгебраическое произведение методом накопления в системе Turbo Pascal. В рамках данной работы были выработаны практические навыки по вычислению произведения методом накопления в системе Turbo Pascal.
618. Исследование многоканальной системы передачи информации с нелинейным уплотнением каналов 56 KB
  Функциональная схема макета. Нелинейное уплотнение каналов. Используются адресные функции значности. Многоканальная система передачи информации.
619. Неврозы у детей и подростков 143.5 KB
  Невротические реакции. Невротические расстройства. Ипохондрический невроз. Истерический невроз. Астенический невроз (неврастения). Невроз навязчивых состояний (обсессивно-компульсивное расстройство). Системные неврозы. Невротические расстройства у детей раннего возраста. Механизмы социальной и школьной дизадаптации, профилактика и коррекция при невротических расстройствах в дошкольном и школьном возрасте.
620. Особенности невербальных средств общения 62.5 KB
  Познакомить педагогов с основными формами невербальной коммуникации. Разобрать с педагогами значение некоторых проявлений невербальной коммуникации. Способствовать развитию педагогической интуиции.
621. Расчет привода цепного транспортёра 273 KB
  Расчёт быстроходного вала (расчёт на статическую прочность). Расчет тихоходного вала (расчёт на статическую и усталостную прочность). Расчет шпоночного соединения. Выбор смазки редуктора. Расчет предохранительного устройства.
622. Разрушение горных пород взрывом 45.5 KB
  Понятие о взрыве и взрывчатом веществе. Кислородный баланс. Определение основных констант взрыва и давления продуктов детонации. Давление продуктов взрыва на стенки зарядной камеры. Определение количества теплоты, выделяющейся при взрыве ВВ.
623. Экологический менеджмент и его функции 145.5 KB
  Функции, инфраструктура и принципы экологического менеджмента. Активное сотрудничество со всеми заинтересованными в экологических аспектах деятельности предприятия лицами и сторонами. Организация потоков загрязняющих веществ и отходов.
624. Совместная обработка нескольких рядов наблюдений 143 KB
  Получить практические навыки проведения экспериментальных исследований по определению метрологических характеристик средств измерений. Оценить равнорассеянность результатов нескольких серий наблюдений.
625. Практика проведения денежных реформ в странах Западной Европы 150 KB
  Денежные реформы Англии и выход из стерлинговых кризисов. Современное положение денежнной системы западноевропейских стран. Значение денежных реформ в развитии денежных систем. Средство выхода из кризисисного состояния и продолжения нормального функционирования национального хозяйства в целом.