49787

Визуализация численных методов. Решение обыкновенных дифференциальных уравнений

Курсовая

Информатика, кибернетика и программирование

Числовые методы позволяют построить интегральную кривую по точкам. В зависимости от того, сколько точек используется для расчета очередной точки интегральной кривой, все численные методы делятся на одношаговые и многошаговые. В нашем случае мы используем одношаговые численные методы.

Русский

2014-01-08

124 KB

2 чел.

Министерство РФ по связи и информатизации

ГОУ ВПО «Сибирский государственный университет

телекоммуникаций и информатики»

Уральский технический институт связи и информатики (филиал)

Кафедра физики, прикладной математики и информатики

КУРСОВАЯ РАБОТА

по информатике

ВАРИАНТ №14:

«Визуализация численных методов.

Решение обыкновенных дифференциальных уравнений».

Исполнитель:

студент гр. ОЕ-71

Паньшин А.А.

Руководитель:

Доцент Минина Е.Е

Екатеринбург

2008

Введение

Дифференциальными называются уравнения, связывающие независимую переменную, искомую функцию и ее производные. Решением ДУ называется функция, которая при подстановке в уравнение обращает его в тождество. Лишь очень немногие из таких уравнений удается решить без помощи вычислительной техники.

Если решить сложно или невозможно, используют численные методы, то есть приближенные значения. В числовых методах обязательно используют начальные условия, чтобы исключить константу.

Числовые методы позволяют построить интегральную кривую по точкам. В зависимости от того, сколько точек используется для расчета очередной точки интегральной кривой, все численные методы делятся на одношаговые и многошаговые. В нашем случае мы используем одношаговые численные методы.

Основные цели и задачи работы:

Цель моей работы- ознакомление, изучение основ системы программирования Microsoft  Visual  Basic и приобретение начальных навыков решение ДУ в Microsoft  Visual  Basic

1. Постановка задачи

Решить методами Эйлера и Эйлера модифицированного задачу Коши для дифференциального уравнения 1-го порядка 2*x*y*dx-(x+1)=0

на отрезке [0; 0.8] с шагом h=0.05 и начальным условием: Y(0) = 4. Общее решение: y=exp(2*x)*C/(x+1)^2

Ответ должен быть получен в виде таблицы результатов:

X

Y(1)

Y(2)

YT

X0

Y0(1)

Y0(2)

Y(X0)

X1

Y1(1)

Y1(2)

Y(X1)

Xk

Yk(1)

Yk(2)

Y(Xk)

Где: Y(1) - решение, полученное методом Эйлера, Y(2) – решение, полученное методом Эйлера модифицированного, YT – точное решение дифференциального уравнения.

Данные таблицы визуализировать на форме в виде графиков.

Перед вычислением последнего столбца таблицы результатов необходимо из начальных условий вычесть значение коэффициента c, используемого в общем решении.

2. Описание используемых методов

Метод Эйлера

 Этот  метод  называют   методом  Рунге-Кутта  первого   порядка точности.

Данный метод одношаговый. Табулирование функции происходит поочередно в каждой точке. Для расчета значения функции в очередном узле необходимо использовать значение функции в одном предыдущем узле.

       Для решения поставленной задачи выполняем следующие действия:

  •  Строим оси координат;
  •  Отмечаем точку A(0; 4) – первую точку интегральной кривой;
  •   Ищем угол наклона касательной к графику в точке A:

  •  Строим касательную AB в точке А под углом α0;
  •  Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 0 + 1 · 0.05 = 0.05;

  •  Проводим прямую x = x1 = 0.05  до пересечения с прямой AB, отмечаем точку B(x1; y1);
  •  Ищем  y1:

Из прямоугольного треугольника  ,

Δy = y1 y0,

 y1 y0= Δx· tg α0

Δx = x1 – x0 = h => y1 = y0 + h · (f(x0; y0)) = 4 + 0.05  f(0;4) = 4+0.05*0= 4

Следовательно, точка B имеет координаты (0.05; 4).

Следующую точку будем искать аналогичным способом по формуле расчета очередной точки интегральной функции:

(*)

Метод Эйлера модифицированный

Для уменьшения погрешности вычислений часто используется модифицированный метод Эйлера. Этот метод имеет так же следующие названия: метод Эйлера-Коши или метод Рунге-Кутта второго порядка точности.

Для решения поставленной задачи выполняем следующие действия:

  •  Строим оси координат;
  •  Отмечаем А(0; 4) – первую точку интегральной кривой;
  •  Ищем угол наклона касательной к графику в точке A:

  •  Строим касательную AB в точке А под углом α0;
  •  Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 0 + 0.05 · 1 = 0.05;

  •  Делим шаг интегрирования на два отрезка и отмечаем x1/2= x0 + h/2, проводим прямую из этой точки до прямой AB, отмечаем точку B(x1/2; y1/2);
  •  Ищем координаты В:

x1/2 = x0 + h/2 = 0 + 0.025 = 0.025

y1/2 = y0 + h/2 · f(x0; y0) = 4 +  0.025· 0= 4

Следовательно, точка B имеет координаты (0.025; 4);

Ищем угол наклона касательной к графику в точке B:

Tgα1=2*0.025*4/0.025+1=0.1951 рад. α1=0.1977

  •  Строим касательную BC в точке B под углом α1;
  •  Проводим прямую x1 = 0.05 до пересечения с прямой BC, отмечаем точку C с координатами (x1; y1);
  •  Ищем y1 :

y1 = y1/2 + h/2(f(x1/2;y1/2)) = 4 + 0.025 · 0.1977 = 4.0049

Следовательно, точка C имеет координаты (0.05; 4.0049).

yi+1 = yi + hf(xi + h/2, yi + h/2 ∙ f(xi, yi))

3. Блок-схемы основных процедур.

Блок-схема функции

Блок-схема метода Эйлера.

Блок-схема методом Эйлера модифицированным.

 

Блок-схема графика.

Блок схема программы.

4. Формы программы.

Исходный вид формы программы.

Итоговый вид формы программы.

5. Листинг программы на языке Visual Basic.

Dim x(50) As Single, y(50) As Single, k(50) As Single, z(50) As Single, p(50) As Single

Private y0 As Single

Private x0 As Single

Private xk As Single

Private C As Single

Function f(t As Single, q As Single) As Single

f = 2 * t * q / t + 1

End Function

Private Sub Command2_Click()

x0 = Val(Text1.Text)

xk = Val(Text2.Text)

y(0) = Val(Text4.Text)

h = Val(Text3.Text)

p(0) = y(0)

z(0) = y(0)

n = Round((xk - x0) / h)

C = (y(0) * (x0 + 1) ^ 2) / Exp(2 * x0)

MSFlexGrid1.Rows = n + 2

MSFlexGrid1.Cols = 4

MSFlexGrid1.TextMatrix(0, 0) = "X"

MSFlexGrid1.TextMatrix(0, 1) = "P"

MSFlexGrid1.TextMatrix(0, 2) = "Yэ"

MSFlexGrid1.TextMatrix(0, 3) = "Yэм"

Max = y(0)

Min = y(0)

For i = 1 To n

x(i) = x0 + i * h

p(i) = Round(C * (x(i) * x(i) * x(i)) )

y(i + 1) = Round(y(i) + f(x(i), y(i)) * h )

z(i + 1) = Round(z(i) + f(x(i) + h / 2, z(i) + h / 2 * f(x(i), z(i))) * h)

If y(i) > Max Then Max = y(i)

If y(i) < Min Then Min = y(i)

MSFlexGrid1.TextMatrix(i + 1, 0) = Str(x(i))

MSFlexGrid1.TextMatrix(i + 1, 1) = Str(p(i))

MSFlexGrid1.TextMatrix(i + 1, 2) = Str(y(i))

MSFlexGrid1.TextMatrix(i + 1, 3) = Str(z(i))

Next i

Picture1.Cls

kx = (Picture1.Width - 1200) / (xk - x0)

ky = (Picture1.Height - 1200) / (Max - Min)

Label4.Caption = Str(Min)

Label5.Caption = Str(Max)

Label6.Caption = Str(x0)

Label7.Caption = Str(xk)

For i = 0 To n - 1

z1 = Round(720 + (x(i) - x0) * kx)

z2 = Round(5400 - (y(i) - Min) * ky)

z3 = Round(720 + (x(i + 1) - x0) * kx)

z4 = Round(5400 - (y(i + 1) - Min) * ky)

z5 = Round(5400 - (p(i) - Min) * ky)

z6 = Round(5400 - (p(i + 1) - Min) * ky)

z7 = Round(5400 - (z(i) - Min) * ky)

z8 = Round(5400 - (z(i + 1) - Min) * ky)

Picture1.Line (z1, z7)-(z3, z8), vbRed

Picture1.Line (z1, z2)-(z3, z4), vbGreen

Picture1.Line (z1, z5)-(z3, z6), vbBlue

Next i

End Sub

Private Sub Command1_Click()

End

End Sub

6. Решение задачи в MathCAD.

Заключение

В данной курсовой работе я изучил численные методы решения задачи

По окончании работы я научился работать в  среде программирования Visual Basic 6.0. и MathCad.

Я, в своей курсовой работе решал уравнение двумя методами: методом Эйлера и методом Эйлера модифицированного.Я выяснил, что метод Эйлера модифицированный имеет меньшую погрешность, чем метод Эйлера.


Eiler

i=0,…,N-1

x(i)=x0+h*i

yi=yi-1+h*f(xi-1,yi-1)

end

Eiler mod

=(xk-x0)/N

i=0,…,N-1

x(i)=x0+h*i

Yi=y(i-2)+h*F(x(i-2)+h/2,y(i-2)+h/2*F(x(i-2), y(i-2))

end

end

F=2*g*m/g+1

F(g,m)

Graphic

x0, xk, y0, h

N=Round((xk-x0)/h)

MSFlexGrid1.Rows=n+2

MSFlexGrid1.TextMatrix(0,0)=”X”

MSFlexGrid1.TextMatrix(0,1)=”YЭ

MSFlexGrid1.TextMatrix(0,2)=”YЭМ

MSFlexGrid1.TextMatrix(0,3)=”P”

x(0)=x0

y(0)=y0

c=y0*(x0+1)^2/exp(2*x0)

y1(i+1)=y1(i)+h*F(x(i),y1(i))

For i=0 to N

x(i)=x0+h*i

Z(0)=y0

y2(i+1)=y2(i)+h*F(x(i)+h/2,y2(i)++h*F(x(i),y2(i))/2

Y(i)=exp(2*x(i)) *C/(x(i)+1)^2

min=Y(0)

For i=0 to N

Y(i)<min

min=y(i)

max=Y(0)

For i=0 to N

Y(i)>max

max=Y(i)

kx = (Picture1.Width - 1200) / (xk - x0)

ky = (Picture1.Height - 1200) / (Max - Min)

нет

да

нетт

да

p(0)=y0

For i=0 to N-1

p1=720+(x(i)-x0)*kx

p2=5400-(y1(i)-min)*ky

p3=720+(x(i+1)-x0)*kx

p4=5400-(Y(i+1)-min)*ky

p5=5400+(p(i)-min)*ky

p6=5400-(p(i+1)-min)*ky

p7=5400-(z(i)-min)*ky

P8=5400-(z(i+1)-min)*ky

Picture1.Line(p1,p2)-(p5,p6),vbRed

Picture1.Line(p1,p3)-(p5,p7),vbGreen

Picture1.Line(p1,p4)-(p5,p8),vbBlue

end

Programma

x0, xk, y0, h

h=(xk-x0)/N

c=y(0)*(x0+1)^2/exp(2*x0)

i=0,…,N

x(i)=x0+h*i

y1(i+1)=y1(i)+h*F(x(i),y1(i))

y2(i+1)=y2(i)+h*F(x(i)+h/2,y2(i)++h*F(x(i),y2(i))/2

Y(i)=( exp(2*x(i)) *C/(x(i)+1)^2

x(i),y1(i),y2(i),Y(i)

end


 

А также другие работы, которые могут Вас заинтересовать

84110. Гарантии прав и свобод личности. Понятия и виды 24.88 KB
  Утверждали что все люди равны от рождения и имеют одинаковые обусловленные природой права Аристотель одним из основополагающих считал право на частную собственность которое отражает природу самого человека и основано на его любви к самому себе. В период феодализма многие естественно-правовые идеи облекались в религиозную оболочку. В этом случае его можно считать правовым. существуют независимо от закрепления в законодательных актах государства являются объектом между народи о правового регулирования и защиты.
84111. Государство и гражданское общество 24.18 KB
  Гражданское общество внутренне противоречиво; в нем доминирует частный интерес совпадает и сталкивается деятельность различных субъектов. Оно играет роль фактора сдерживающего развитие противоречий до уровня способного разрушить гражданское общество. Как взаимосвязанные элементы единой общественной системы гражданское общество и государство обусловливают друг друга.
84112. Правовое государство и теоретические основы и практика 24.77 KB
  Теория правового государства берет свои истоки из периода античности. Таким образом у Аристотеля мы находим признак правового государства верховенство права. В этот период наиболее последовательное и завершенное освещение дискуссионных вопросов по теории правового государства находим у Н.
84113. ПРИНЦИПЫ ПРАВОВОГО ГОСУДАРСТВА 34.33 KB
  Права человека положены в основу системы сдержек и противовесов правового режима ограничения для государства не допуская тем самым излишнего регулирующего вторжения последнего в частную жизнь. Индивидуальные права представляют все одну общую черту: они ограничивают права государства – писал в начале XX в. То есть власть государства можно ограничить прежде всего правами человека и гражданина которые выступают своеобразным проявлением власти личности волей гражданского общества составляют главную часть права вообще.
84115. Функции теории государства и права 23.5 KB
  Гносеологическая гносеология учение о познание связана с познанием ТГП сущности содержания и форм государственно-правовых явлений. Эвристическая ТГП не только познаёт бытие но и открывает новые закономерности в государственно-правовых явлениях. Прогностическая предсказательная на основе полученных данных ТГП прогнозирует развитие государства и права в будущем их проблемы. Понятия и концепция ТГП заимствуется отраслевыми и специальными юридическими науками.
84116. Место теории государства и права в системе юридических наук 21.88 KB
  Теория государства и права в системе юридических наук. Теория государства и права как общетеоретическая отрасль юридической науки. Историко-правовые науки к которым относятся история государства и права России зарубежных стран история политических и правовых учений.
84117. Взаимосвязь теории государства и права с общественными науками 21.54 KB
  Теория государства и права в системе гуманитарных наук. Прежде всего теория государства и права связана с историей изучающей прошлое человечества во всей его конкретности и многообразии. Так выясняя причины происхождения государства и права и исследуя их поступательное развитие теория государства и права опирается на конкретные данные исторической науки.
84118. Общенаучные и частные методы изучения государства 23.46 KB
  Философские методы определяют подход к изучению государства и права в целом. 2 Идеализм связывают существование государства и права либо с объективным разумом объективные идеалисты либо с сознанием человека его переживаниями субъективными и осознанными усилиями субъективные идеалисты. Не внешние факторы определяют развитие государства и права а внутреннее духовное начало. 5 Аксиологический анализ государства и права как специальных ценностей которые регулируют поведение отдельных личностей.