49788

Визуализация численных методов. Решение обыкновенных дифференциальных уравнений

Курсовая

Информатика, кибернетика и программирование

Дифференциальными называются уравнения, связывающие независимую переменную, искомую функцию и ее производные. Решением ДУ называется функция, которая при подстановке в уравнение обращает его в тождество. Лишь очень немногие из таких уравнений удается решить без помощи вычислительной техники.

Русский

2014-01-15

10.19 MB

21 чел.

Министерство РФ по связи и информатизации

ГОУ ВПО «Сибирский государственный университет

телекоммуникаций и информатики»

Уральский технический институт связи и информатики (филиал)

Кафедра физики, прикладной математики и информатики

КУРСОВАЯ РАБОТА

по информатике

ВАРИАНТ №11:

«Визуализация численных методов.

Решение обыкновенных дифференциальных уравнений».

Исполнитель:

студентка 1 курса

группы ОЕ-71

Костиневич С.И.

Руководитель:

Минина Е.Е

Екатеринбург

2008

Введение

Существует множество технических систем и технологических процессов, характеристики которых непрерывно  меняются со временем t. Такие явления обычно подчиняются физическим законам, которые формулируются в виде дифференциальных уравнений (ДУ).

Дифференциальными называются уравнения, связывающие независимую переменную, искомую функцию и ее производные. Решением ДУ называется функция, которая при подстановке в уравнение обращает его в тождество. Лишь очень немногие из таких уравнений удается решить без помощи вычислительной техники. Поэтому численные методы решения ДУ играют важную роль в практике инженерных расчетов.

Если искомая функция зависит от одной переменной, то ДУ называют обыкновенным; в противном случае – ДУ в частных производных. В данной курсовой работе рассматриваются методы решения обыкновенных ДУ.

Основные цели и задачи работы:

  •  изучение численных методов решения обыкновенных дифференциальных уравнений;
  •  написание программы на языке Visual Basic;
  •  проверка решения с помощью приложения MathCAD.

1. Постановка задачи

Решить методами Эйлера и Эйлера модифицированного задачу Коши для дифференциального уравнения 1-го порядка y'*x=exp(x)-y на отрезке [1; 2] с шагом h=0.1 и начальным условием: Y(1) = 1. Общее решение: y=[exp(x)+1-c]/x

Ответ должен быть получен в виде таблицы результатов:

X

Y(1)

Y(2)

YT

X0

Y0(1)

Y0(2)

Y(X0)

X1

Y1(1)

Y1(2)

Y(X1)

Xk

Yk(1)

Yk(2)

Y(Xk)

Где: Y(1) - решение, полученное методом Эйлера, Y(2) – решение, полученное методом Эйлера модифицированного, YT – точное решение дифференциального уравнения.

Данные таблицы визуализировать на форме в виде графиков.

Перед вычислением последнего столбца таблицы результатов необходимо из начальных условий вычесть значение коэффициента c, используемого в общем решении.

2. Описание используемых методов

В тех случаях, когда решить уравнение сложно или невозможно, используют численные методы (приближенное решение).

В численных методах обязательно должны быть начальные условия, чтобы исключить константу. Численными методами мы должны построить интегральную кривую, т.е. график решения.

2.1. Метод Эйлера

Иногда  этот  метод  называют   методом  Рунге-Кутта  первого   порядка точности.

Данный метод одношаговый. Табулирование функции происходит поочередно в каждой точке. Для расчета значения функции в очередном узле необходимо использовать значение функции в одном предыдущем узле.

       Для решения поставленной задачи выполняем следующие действия:

  •  Строим оси координат;
  •  Отмечаем точку A(1; 1) – первую точку интегральной кривой;
  •   Ищем угол наклона касательной к графику в точке A:

  •  Строим касательную AB в точке А под углом α0;
  •  Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 1 + 1 · 0,1 = 1,1;

  •  Проводим прямую x = x1 = 1,1  до пересечения с прямой AB, отмечаем точку B(x1; y1);
  •  Ищем  y1:

Из прямоугольного треугольника ABC ,

Δy = y1 y0,

 y1 y0= Δx· tg α0

Δx = x1 – x0 = h => y1 = y0 + h · (f(x0; y0)) = 1 + 0,1  f(1;1) = 1 + 0,1 · 1,718 = 1,172

Следовательно, точка B имеет координаты (1,1; 1,172).

Следующую точку будем искать аналогичным способом по формуле расчета очередной точки интегральной функции:

(*)

Рис1. Решение задачи методом Эйлера.

Из формулы (*) видно, что для расчета каждой следующей точки интегральной функции необходимо знать значение только одной предыдущей точки. Таким образом, зная начальные условия, можно построить интегральную кривую на заданном промежутке.

Метод Эйлера - один из простейших методов численного решения обыкновенных дифференциальных уравнений. Но существенным его недостатком является большая погрешность вычислений.

2.2.  Метод Эйлера модифицированный

Для уменьшения погрешности вычислений часто используется модифицированный метод Эйлера. Этот метод имеет так же следующие названия: метод Эйлера-Коши или метод Рунге-Кутта второго порядка точности.

Для решения поставленной задачи выполняем следующие действия:

  •  Строим оси координат;
  •  Отмечаем А(1; 1) – первую точку интегральной кривой;
  •  Ищем угол наклона касательной к графику в точке A:

  •  Строим касательную AB в точке А под углом α0;
  •  Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 1 + 1 · 0,1 = 1,1;

  •  Делим шаг интегрирования на два отрезка и отмечаем x1/2= x0 + h/2, проводим прямую из этой точки до прямой AB, отмечаем точку B(x1/2; y1/2);
  •  Ищем координаты В:

x1/2 = x0 + h/2 = 1 + 0,1/2 = 1,05

y1/2 = y0 + h/2 · f(x0; y0) = 1 + 0,1/2 · 1,718 = 1,086

Следовательно, точка B имеет координаты (1,05; 1,086);

Ищем угол наклона касательной к графику в точке B:

α1 = arctg(f(x1/2; y1/2)) = arctg(( 1,718– 1,086)/1,05)) = arctg(1,687) = 59,3°

  •  Строим касательную BC в точке B под углом α1;
  •  Проводим прямую x1 = 1,1 до пересечения с прямой BC, отмечаем точку C с координатами (x1; y1);
  •  Ищем y1 :

y1 = y1/2 + h/2(f(x1/2;y1/2)) = 1,086 + 0,1/2 · 1,687 = 1,169

Следовательно, точка C имеет координаты (1,1; 1,169).

yi+1 = yi + hf(xi + h/2, yi + h/2 ∙ f(xi, yi))

Рис2. Решение задачи методом Эйлера модифицированного

3. Блок-схемы основных процедур.

Блок-схема функции.

Блок-схема процедуры решения ДУ методом Эйлера.

Блок-схема процедуры решения ДУ методом Эйлера модифицированного.

 

Блок-схема графика.

Блок схема программы.

4. Формы программы.

Исходный вид формы программы.

Итоговый вид формы программы.

5. Листинг программы на языке Visual Basic.

Private x0, xk, y0, h, max, min, c As Single

Dim x() As Single, Y() As Single, y1() As Single, y2() As Single

Function F(a, b As Single) As Single

F = (Exp(a) - b) / a

End Function

Private Sub Command1_Click()

x0 = Val(Text1.Text)

xk = Val(Text2.Text)

y0 = Val(Text3.Text)

h = Val(Text4.Text)

N = Round((xk - x0) / h)

c = Exp(x0) + 1 - x0 * y0

MSFlexGrid1.Rows = N + 2

MSFlexGrid1.TextMatrix(0, 0) = "X"

MSFlexGrid1.TextMatrix(0, 1) = "Эйлер"

MSFlexGrid1.TextMatrix(0, 2) = "Эйлер М"

MSFlexGrid1.TextMatrix(0, 3) = "Общее"

ReDim x(N), Y(N), y1(N + 1), y2(N + 1)

x(0) = x0

y1(0) = y0

y2(0) = y0

For i = 0 To N

x(i) = x0 + h * i

y1(i + 1) = y1(i) + h * F(x(i), y1(i))

y2(i + 1) = y2(i) + h * F(x(i) + h / 2, y2(i) + h * F(x(i), y2(i)) / 2)

Y(i) = (Exp(x(i)) + 1 - c) / x(i)

MSFlexGrid1.TextMatrix(i + 1, 0) = Str(x(i))

MSFlexGrid1.TextMatrix(i + 1, 1) = Str(y1(i))

MSFlexGrid1.TextMatrix(i + 1, 2) = Str(y2(i))

MSFlexGrid1.TextMatrix(i + 1, 3) = Str(Y(i))

Next i

min = Y(0)

max = Y(0)

For i = 0 To N

If Y(i) < min Then

min = Y(i)

Else

If Y(i) > max Then

max = Y(i)

End If

End If

Next i

Label7.Caption = Str(max)

Label8.Caption = Str(min)

Label9.Caption = Str(x0)

Label10.Caption = Str(xk)

Picture1.Cls

kx = (5280 - 1320) / (xk - x0)

ky = (4320 - 480) / (max - min)

For i = 0 To N - 1

p1 = 1320 + (x(i) - x0) * kx

p2 = 4320 - (y1(i) - min) * ky

p3 = 4320 - (y2(i) - min) * ky

p4 = 4320 - (Y(i) - min) * ky

p5 = 1320 + (x(i + 1) - x0) * kx

p6 = 4320 - (y1(i + 1) - min) * ky

p7 = 4320 - (y2(i + 1) - min) * ky

p8 = 4320 - (Y(i + 1) - min) * ky

Picture1.Line (p1, p2)-(p5, p6), vbYellow

Picture1.Line (p1, p3)-(p5, p7), vbBlue

Picture1.Line (p1, p4)-(p5, p8), vbRed

Next i

End Sub

6. Решение задачи в MathCAD.

Заключение

По окончании работы я научился работать в  среде программирования Visual Basic 6.0. и MathCad.

Я, в своей курсовой работе решал уравнение двумя методами: методом Эйлера и методом Эйлера модифицированного.Я выяснил, что метод Эйлера модифицированный имеет меньшую погрешность, чем метод Эйлера.

Содержание

Введение

  1.  Постановка задачи
  2.  Описание используемых методов

Метод Эйлера

Метод Эйлера модифицированный

  1.  Блок-схемы основных процедур
  2.  Формы программы
  3.  Листинг программы на языке Visual Basic
  4.  Решение задачи в MathCAD

Заключение


F(a,b)

F=(exp(a)-b)/a

end

Эйлер

h=(xk-x0)/N

i=0,…,N-1

x(i)=x0+h*i

1(i+1)=y1(i)+h*F(x1(i),y1(i))

end

Эйлер М

h=(xk-x0)/N

i=0,…,N-1

x(i)=x0+h*i

Y2(i+1)=y2(i)+h*F(x(i)+h/2,y2(i)+h*F(x(i), y2(i))/2)

end

Graphic

x0, xk, y0, h

N=Round((xk-x0)/h)

MSFlexGrid1.Rows=n+2

MSFlexGrid1.TextMatrix(0,0)=”X”

MSFlexGrid1.TextMatrix(0,1)=”Эйлер

MSFlexGrid1.TextMatrix(0,2)=”Эйлер М

MSFlexGrid1.TextMatrix(0,3)=”Общее

x(0)=x0

y1(0)=y0

y2(0)=y0

c=exp(x0)+1-x0*y0

x(i)=x0+h*i

y1(i+1)=y1(i)+h*F(x(i),y1(i))

For i=0 to N

1

1

y2(i+1)=y2(i)+h*F(x(i)+h/2,y2(i)++h*F(x(i),y2(i))/2

Y(i)=(Exp(x(i))+1-c)/x(i)

min=Y(0)

For i=0 to N

Y(i)<min

min=y(i)

max=Y(0)

For i=0 to N

Y(i)>max

max=Y(i)

kx=(5280-1320)/(xk-x0)

ky=(4320-480)/(max-min)

нет

да

нетт

да

2

2

For i=0 to N-1

p1=1320+(x(i)-x0)*kx

p2=4320-(y1(i)-min)*ky

p3=4320-(y2(i)-min)*ky

p4=4320-(Y(i)-min)*ky

p5=1320+(x(i+1)-x0)*kx

p6=4320-(y1(i+1)-min)*ky

p7=4320-(y2(i+1)-min)*ky

P8=4320-(Y(i+1)-min)*ky

Picture1.Line(p1,p2)-(p5,p6),vbYellow

Picture1.Line(p1,p3)-(p5,p7),vbBlue

Picture1.Line(p1,p4)-(p5,p8),vbRed

end

Programma

x0, xk, y0, h

h=(xk-x0)/N

c=Exp(x0)+1-x0*y0

i=0,…,N

x(i)=x0+h*i

y1(i+1)=y1(i)+h*F(x(i),y1(i))

Y2(i+1)=y2(i)+h*F(x(i)+h/2,    y2(i)+h*F(x(i),y2(i))/2)

Y(i)=(Exp(x(i))+1-c)/x(i)

x(i),y1(i),y2(i),Y(i)

end


 

А также другие работы, которые могут Вас заинтересовать

83947. Лекарственное сырье животного происхождения. Спермацет и его заменители 889 KB
  Необходимость очистки организма вытекает из факта, во-первых, весьма малого употребления грубой растительной пищи, которая является естественным очистителем кишечного тракта, а во-вторых, большей частью хаотичным питанием большинства людей, которое приводит к неполному перевариванию пищи.
83948. Сoвершенствoвание валютнoй пoлитики Рoссийскoй Федерации 204.63 KB
  Вoздействие валютнoй пoлитики Центральнoгo банка РФ на экoнoмику Рoссии. Oбмeнный курс валюты и инфляция в Рoссии. Денежнo-кредитная пoлитика разрабатываемая Банкoм Рoссии в свoих вариантах макрoэкoнoмическoгo развития страны в первую oчередь учитывает вoзмoжные кoлебания цен на нефть.
83949. Исследование технологии product placement в зарубежном кинематографе методом фокус-группы на примере фильма «Одноклассники» («Grown Ups») 161.5 KB
  Такую технологию называют продакт плейсмент который в свою очередь набирает все большую популярность. Таким образом актуальность продакт плейсмент в контексте темы данной работы очевидна. Актуальность состоит в том что в настоящее время технология продакт плейсмент активно развивается в России...
83950. Организация обслуживания участников конференции в количестве 70 человек (завтрак в ресторане при четырех звездочном отеле по типу шведского стола) 285.02 KB
  Это обеспечивается прежде всего изменением технологий переработки продуктов питания развитием коммуникаций средств доставки продукции и сырья интенсификацией многих производственных процессов. По международным документам термин общественное питание характеризуется такими различными определениями как методы приготовления большого количества пиши выполняемые без предварительной договоренности с потребителем или как любые виды питания организованного вне дома . Во всем мире предприятия общественного питания принадлежат либо...
83951. Разработки бизнес-плана предприятия гостиницы «Лавра» 109.83 KB
  Решив заняться бизнесом предприниматель должен тщательно спланировать его организацию. Речь идет о бизнеспланах с которых во всем мире принято начинать любое коммерческое мероприятие. В рыночной экономике бизнесплан является рабочим инструментом и для действующих фирм используемых во всех сферах предпринимательства.
83952. Организация поточной застройки жилых кварталов 254 KB
  Нормативная продолжительность устанавливается в соответствии со СниП 1.04.03.-85. «Нормы продолжительности строительства и задела в строительстве предприятий, зданий и сооружений.», в зависимости от конструктивных характеристик и площадей ( мощностей) объектов.
83953. Оценка воздействия на окружающую среду 305.27 KB
  Открытая стоянка автотранспорта Расчет производится в соответствии с Методикой инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий расчетным методом. Выброс iго вещества одним легковым автомобилем в день при выезде с территории в теплый период для СО для СН для...
83954. Актуальный ассортимент и приготовление горячих соусов к блюдам из мяса 2.47 MB
  Провести и разработать ассортимент современных горячих соусов, рассмотреть технологию их приготовления и примеры современной подачи. Задачи: Доказать актуальность выбранной темы; Дать историческую справку о значении соусов в питании; Разработать ассортимент современных горячих соусов...
83955. Анализ качества и эффективности использования персонала ОАО «Сбербанка России» 451.5 KB
  В связи с этим актуальность выбранной темы очевидна. В настоящее время, вопрос оценки качества персонала встает особенно остро, поскольку каждая организация старается максимально оптимизировать свою деятельность, сделать ее более эффективной.