49788

Визуализация численных методов. Решение обыкновенных дифференциальных уравнений

Курсовая

Информатика, кибернетика и программирование

Дифференциальными называются уравнения, связывающие независимую переменную, искомую функцию и ее производные. Решением ДУ называется функция, которая при подстановке в уравнение обращает его в тождество. Лишь очень немногие из таких уравнений удается решить без помощи вычислительной техники.

Русский

2014-01-15

10.19 MB

21 чел.

Министерство РФ по связи и информатизации

ГОУ ВПО «Сибирский государственный университет

телекоммуникаций и информатики»

Уральский технический институт связи и информатики (филиал)

Кафедра физики, прикладной математики и информатики

КУРСОВАЯ РАБОТА

по информатике

ВАРИАНТ №11:

«Визуализация численных методов.

Решение обыкновенных дифференциальных уравнений».

Исполнитель:

студентка 1 курса

группы ОЕ-71

Костиневич С.И.

Руководитель:

Минина Е.Е

Екатеринбург

2008

Введение

Существует множество технических систем и технологических процессов, характеристики которых непрерывно  меняются со временем t. Такие явления обычно подчиняются физическим законам, которые формулируются в виде дифференциальных уравнений (ДУ).

Дифференциальными называются уравнения, связывающие независимую переменную, искомую функцию и ее производные. Решением ДУ называется функция, которая при подстановке в уравнение обращает его в тождество. Лишь очень немногие из таких уравнений удается решить без помощи вычислительной техники. Поэтому численные методы решения ДУ играют важную роль в практике инженерных расчетов.

Если искомая функция зависит от одной переменной, то ДУ называют обыкновенным; в противном случае – ДУ в частных производных. В данной курсовой работе рассматриваются методы решения обыкновенных ДУ.

Основные цели и задачи работы:

  •  изучение численных методов решения обыкновенных дифференциальных уравнений;
  •  написание программы на языке Visual Basic;
  •  проверка решения с помощью приложения MathCAD.

1. Постановка задачи

Решить методами Эйлера и Эйлера модифицированного задачу Коши для дифференциального уравнения 1-го порядка y'*x=exp(x)-y на отрезке [1; 2] с шагом h=0.1 и начальным условием: Y(1) = 1. Общее решение: y=[exp(x)+1-c]/x

Ответ должен быть получен в виде таблицы результатов:

X

Y(1)

Y(2)

YT

X0

Y0(1)

Y0(2)

Y(X0)

X1

Y1(1)

Y1(2)

Y(X1)

Xk

Yk(1)

Yk(2)

Y(Xk)

Где: Y(1) - решение, полученное методом Эйлера, Y(2) – решение, полученное методом Эйлера модифицированного, YT – точное решение дифференциального уравнения.

Данные таблицы визуализировать на форме в виде графиков.

Перед вычислением последнего столбца таблицы результатов необходимо из начальных условий вычесть значение коэффициента c, используемого в общем решении.

2. Описание используемых методов

В тех случаях, когда решить уравнение сложно или невозможно, используют численные методы (приближенное решение).

В численных методах обязательно должны быть начальные условия, чтобы исключить константу. Численными методами мы должны построить интегральную кривую, т.е. график решения.

2.1. Метод Эйлера

Иногда  этот  метод  называют   методом  Рунге-Кутта  первого   порядка точности.

Данный метод одношаговый. Табулирование функции происходит поочередно в каждой точке. Для расчета значения функции в очередном узле необходимо использовать значение функции в одном предыдущем узле.

       Для решения поставленной задачи выполняем следующие действия:

  •  Строим оси координат;
  •  Отмечаем точку A(1; 1) – первую точку интегральной кривой;
  •   Ищем угол наклона касательной к графику в точке A:

  •  Строим касательную AB в точке А под углом α0;
  •  Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 1 + 1 · 0,1 = 1,1;

  •  Проводим прямую x = x1 = 1,1  до пересечения с прямой AB, отмечаем точку B(x1; y1);
  •  Ищем  y1:

Из прямоугольного треугольника ABC ,

Δy = y1 y0,

 y1 y0= Δx· tg α0

Δx = x1 – x0 = h => y1 = y0 + h · (f(x0; y0)) = 1 + 0,1  f(1;1) = 1 + 0,1 · 1,718 = 1,172

Следовательно, точка B имеет координаты (1,1; 1,172).

Следующую точку будем искать аналогичным способом по формуле расчета очередной точки интегральной функции:

(*)

Рис1. Решение задачи методом Эйлера.

Из формулы (*) видно, что для расчета каждой следующей точки интегральной функции необходимо знать значение только одной предыдущей точки. Таким образом, зная начальные условия, можно построить интегральную кривую на заданном промежутке.

Метод Эйлера - один из простейших методов численного решения обыкновенных дифференциальных уравнений. Но существенным его недостатком является большая погрешность вычислений.

2.2.  Метод Эйлера модифицированный

Для уменьшения погрешности вычислений часто используется модифицированный метод Эйлера. Этот метод имеет так же следующие названия: метод Эйлера-Коши или метод Рунге-Кутта второго порядка точности.

Для решения поставленной задачи выполняем следующие действия:

  •  Строим оси координат;
  •  Отмечаем А(1; 1) – первую точку интегральной кривой;
  •  Ищем угол наклона касательной к графику в точке A:

  •  Строим касательную AB в точке А под углом α0;
  •  Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 1 + 1 · 0,1 = 1,1;

  •  Делим шаг интегрирования на два отрезка и отмечаем x1/2= x0 + h/2, проводим прямую из этой точки до прямой AB, отмечаем точку B(x1/2; y1/2);
  •  Ищем координаты В:

x1/2 = x0 + h/2 = 1 + 0,1/2 = 1,05

y1/2 = y0 + h/2 · f(x0; y0) = 1 + 0,1/2 · 1,718 = 1,086

Следовательно, точка B имеет координаты (1,05; 1,086);

Ищем угол наклона касательной к графику в точке B:

α1 = arctg(f(x1/2; y1/2)) = arctg(( 1,718– 1,086)/1,05)) = arctg(1,687) = 59,3°

  •  Строим касательную BC в точке B под углом α1;
  •  Проводим прямую x1 = 1,1 до пересечения с прямой BC, отмечаем точку C с координатами (x1; y1);
  •  Ищем y1 :

y1 = y1/2 + h/2(f(x1/2;y1/2)) = 1,086 + 0,1/2 · 1,687 = 1,169

Следовательно, точка C имеет координаты (1,1; 1,169).

yi+1 = yi + hf(xi + h/2, yi + h/2 ∙ f(xi, yi))

Рис2. Решение задачи методом Эйлера модифицированного

3. Блок-схемы основных процедур.

Блок-схема функции.

Блок-схема процедуры решения ДУ методом Эйлера.

Блок-схема процедуры решения ДУ методом Эйлера модифицированного.

 

Блок-схема графика.

Блок схема программы.

4. Формы программы.

Исходный вид формы программы.

Итоговый вид формы программы.

5. Листинг программы на языке Visual Basic.

Private x0, xk, y0, h, max, min, c As Single

Dim x() As Single, Y() As Single, y1() As Single, y2() As Single

Function F(a, b As Single) As Single

F = (Exp(a) - b) / a

End Function

Private Sub Command1_Click()

x0 = Val(Text1.Text)

xk = Val(Text2.Text)

y0 = Val(Text3.Text)

h = Val(Text4.Text)

N = Round((xk - x0) / h)

c = Exp(x0) + 1 - x0 * y0

MSFlexGrid1.Rows = N + 2

MSFlexGrid1.TextMatrix(0, 0) = "X"

MSFlexGrid1.TextMatrix(0, 1) = "Эйлер"

MSFlexGrid1.TextMatrix(0, 2) = "Эйлер М"

MSFlexGrid1.TextMatrix(0, 3) = "Общее"

ReDim x(N), Y(N), y1(N + 1), y2(N + 1)

x(0) = x0

y1(0) = y0

y2(0) = y0

For i = 0 To N

x(i) = x0 + h * i

y1(i + 1) = y1(i) + h * F(x(i), y1(i))

y2(i + 1) = y2(i) + h * F(x(i) + h / 2, y2(i) + h * F(x(i), y2(i)) / 2)

Y(i) = (Exp(x(i)) + 1 - c) / x(i)

MSFlexGrid1.TextMatrix(i + 1, 0) = Str(x(i))

MSFlexGrid1.TextMatrix(i + 1, 1) = Str(y1(i))

MSFlexGrid1.TextMatrix(i + 1, 2) = Str(y2(i))

MSFlexGrid1.TextMatrix(i + 1, 3) = Str(Y(i))

Next i

min = Y(0)

max = Y(0)

For i = 0 To N

If Y(i) < min Then

min = Y(i)

Else

If Y(i) > max Then

max = Y(i)

End If

End If

Next i

Label7.Caption = Str(max)

Label8.Caption = Str(min)

Label9.Caption = Str(x0)

Label10.Caption = Str(xk)

Picture1.Cls

kx = (5280 - 1320) / (xk - x0)

ky = (4320 - 480) / (max - min)

For i = 0 To N - 1

p1 = 1320 + (x(i) - x0) * kx

p2 = 4320 - (y1(i) - min) * ky

p3 = 4320 - (y2(i) - min) * ky

p4 = 4320 - (Y(i) - min) * ky

p5 = 1320 + (x(i + 1) - x0) * kx

p6 = 4320 - (y1(i + 1) - min) * ky

p7 = 4320 - (y2(i + 1) - min) * ky

p8 = 4320 - (Y(i + 1) - min) * ky

Picture1.Line (p1, p2)-(p5, p6), vbYellow

Picture1.Line (p1, p3)-(p5, p7), vbBlue

Picture1.Line (p1, p4)-(p5, p8), vbRed

Next i

End Sub

6. Решение задачи в MathCAD.

Заключение

По окончании работы я научился работать в  среде программирования Visual Basic 6.0. и MathCad.

Я, в своей курсовой работе решал уравнение двумя методами: методом Эйлера и методом Эйлера модифицированного.Я выяснил, что метод Эйлера модифицированный имеет меньшую погрешность, чем метод Эйлера.

Содержание

Введение

  1.  Постановка задачи
  2.  Описание используемых методов

Метод Эйлера

Метод Эйлера модифицированный

  1.  Блок-схемы основных процедур
  2.  Формы программы
  3.  Листинг программы на языке Visual Basic
  4.  Решение задачи в MathCAD

Заключение


F(a,b)

F=(exp(a)-b)/a

end

Эйлер

h=(xk-x0)/N

i=0,…,N-1

x(i)=x0+h*i

1(i+1)=y1(i)+h*F(x1(i),y1(i))

end

Эйлер М

h=(xk-x0)/N

i=0,…,N-1

x(i)=x0+h*i

Y2(i+1)=y2(i)+h*F(x(i)+h/2,y2(i)+h*F(x(i), y2(i))/2)

end

Graphic

x0, xk, y0, h

N=Round((xk-x0)/h)

MSFlexGrid1.Rows=n+2

MSFlexGrid1.TextMatrix(0,0)=”X”

MSFlexGrid1.TextMatrix(0,1)=”Эйлер

MSFlexGrid1.TextMatrix(0,2)=”Эйлер М

MSFlexGrid1.TextMatrix(0,3)=”Общее

x(0)=x0

y1(0)=y0

y2(0)=y0

c=exp(x0)+1-x0*y0

x(i)=x0+h*i

y1(i+1)=y1(i)+h*F(x(i),y1(i))

For i=0 to N

1

1

y2(i+1)=y2(i)+h*F(x(i)+h/2,y2(i)++h*F(x(i),y2(i))/2

Y(i)=(Exp(x(i))+1-c)/x(i)

min=Y(0)

For i=0 to N

Y(i)<min

min=y(i)

max=Y(0)

For i=0 to N

Y(i)>max

max=Y(i)

kx=(5280-1320)/(xk-x0)

ky=(4320-480)/(max-min)

нет

да

нетт

да

2

2

For i=0 to N-1

p1=1320+(x(i)-x0)*kx

p2=4320-(y1(i)-min)*ky

p3=4320-(y2(i)-min)*ky

p4=4320-(Y(i)-min)*ky

p5=1320+(x(i+1)-x0)*kx

p6=4320-(y1(i+1)-min)*ky

p7=4320-(y2(i+1)-min)*ky

P8=4320-(Y(i+1)-min)*ky

Picture1.Line(p1,p2)-(p5,p6),vbYellow

Picture1.Line(p1,p3)-(p5,p7),vbBlue

Picture1.Line(p1,p4)-(p5,p8),vbRed

end

Programma

x0, xk, y0, h

h=(xk-x0)/N

c=Exp(x0)+1-x0*y0

i=0,…,N

x(i)=x0+h*i

y1(i+1)=y1(i)+h*F(x(i),y1(i))

Y2(i+1)=y2(i)+h*F(x(i)+h/2,    y2(i)+h*F(x(i),y2(i))/2)

Y(i)=(Exp(x(i))+1-c)/x(i)

x(i),y1(i),y2(i),Y(i)

end


 

А также другие работы, которые могут Вас заинтересовать

31052. Русское общество и гос-во в 18 веке. Внутр. и внешняя политика 29.98 KB
  В России в XVIII в. При Петре I в России окончательно утвердился абсолютизм Петр был провозглашен императором что означало усиление власти самого царя он стал монархом самодержавным и неограниченным. В России была проведена реформа государственного аппарата – вместо Боярской думы учреждался Сенат в состав которого входили девять сановников ближайших Петру I. В России упразднялась должность патриарха наблюдение за церковью поручалось оберпрокурору Синода.
31053. Революционное движение в России в 19в (причины, особенности, этапы, крупнейшие организации) 37.5 KB
  Революционное движение в России в 19впричины особенности этапы крупнейшие организации В первой четверти 19в зародилась в России революционная идеология носителями которой были декабристы. Познакомившееся с политич движениями Запада во время освободительных походов передовое дворянство понимало что основой отсталости России является крепостное право. Реакционная политика в области просвещения и культуры создание Аракчеевым военных поселений участие России в подавлении революционных событий в Европе добавили уверенности в необходимости...
31054. Консервативные партии 53 KB
  Консервативные партии: Весна 1905г. Программа: основана на триаде Уварова Православие самодержавие народность Сохранение неограниченной власти царя и созыв Земского собора из излюбленных коренных русских людей Сохранение единой и неделимой Руси Неприкосновенность частной помещичьей собственности Сохранение господствующего положения русских Укрепление позиций РПЦ Действовали: боевые черносотенные дружины против революционеров Союз 17 октября Октябрь 1905 – начало организованного оформления партии Февраль 1906г – I...
31055. Эпоха Ивана Грозного. Внутренняя политика(реформы Избранной рады, опричнина, последние годы царствования). Историки о причинах и внутреннем смысле опричнины. Оценка роли эпохи Ивана Грозного в отеч истории 32.5 KB
  Эпоха Ивана Грозного. Оценка роли эпохи Ивана Грозного в отеч истории. В 1547 произошло венчание Ивана4 на царство. После пожара началось самостоятельное правление Ивана4.
31056. Внешняя политика в эпоху Ивана Грозного 29.5 KB
  Покорение Казани стало большим внешнеполитич успехом России. В 1556 была присоединена Астрахань у России оказались также земли Ногайской Орды. Для России Ливония была интересна прежде всего как выход в Балтику. Поводом к войне стала неуплата Ливонией России юрьевой дани в течение 50 лет.
31057. Россия в конце 16-нач18в. Смутное время: причины, содержание, этапы и итоги данной эпохи 40 KB
  Первый этап Смутного времени начался династическим кризисом вызванным убийством царем Иваном IV Грозным своего старшего сына Ивана приходом к власти его брата Федора Ивановича и смертью их младшего сводного брата Дмитрия по убеждению многих зарезанного приспешниками фактического правителя страны Бориса Годунова. В апреле 1605 после неожиданной смерти Бориса Годунова и непризнания его сына Федора царем на сторону Лжедмитрия I перешло и московское боярство. В июне 1605 самозванец почти на год стал царем Дмитрием I. Через два дня царем...
31058. Россия в 17в. – хоз-во, общество, политич строй и гос управление 31 KB
  Все население можно разделить на 2 группы: служилые слоинесли ту или иную форму гос службы и тяглое населениесодержали их платя налоги и исполняя повиности. Бояре занимали высшие гос должности обладали крупными вотчинами и поместьями. Существовало 2 периода в развитии русской госвенности 17в.
31059. Воспалительные поражения (сиалоадениты) слюнных желез 22.43 KB
  Сиалоаденит может быть самостоятельным первичным но чаще является осложнением или существенным проявлением какоголибо другого заболевания вторичный сиалоаденит. По течению выделяют острый и хронический сиалоаденит. По этиологии выделяют вирусный бактериальный грибковый сиалоаденит.
31060. Эпидемический паротит (свинка) 14.68 KB
  Входными воротами являются слизистые оболочки полости рта носа глотки с развитием последующей вирусемии и фиксацией вируса в слюнных и других железах. В слюнных железах вирус размножается и отсюда выделяется со слюной.