49794

Расчет переходных процессов

Курсовая

Математика и математический анализ

При всех изменениях в электрической цепи: включении выключении коротком замыкании колебаниях величины какого-либо параметра и т. Расчет переходных процессов с применением классического метода Для электрической цепи рисунок 1 и исходных данных таблица 1 найти закон изменения тока при замыкании ключа К. 7 Так как следовательно: Так как следовательно: Закон изменения тока на индуктивности будет иметь вид: Для нахождения закона изменения тока на индуктивности при переходном процессе необходимо рассчитать входное...

Русский

2014-01-15

185.88 KB

4 чел.

4

СОДЕРЖАНИЕ

5

6

9

11

12

ВВЕДЕНИЕ ………………………………………………………………..………..

1 Расчет переходных процессов с применением классического метода …………

2 Расчет переходных процессов с применением операторного метода ………….

ЗАКЛЮЧЕНИЕ …………………………………………………………………….

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ ………………………………….


5

ВВЕДЕНИЕ

При всех изменениях в электрической цепи: включении, выключении, коротком замыкании, колебаниях величины какого-либо параметра и т.п. – в ней возникают переходные процессы, которые не могут протекать мгновенно, так как невозможно мгновенное изменение энергии, запасенной в электромагнитном поле цепи. Таким образом, переходный процесс обусловлен несоответствием величины запасенной энергии в магнитном поле катушки и электрическом поле конденсатора ее значению для нового состояния цепи.

При переходных процессах могут возникать большие перенапряжения, сверхтоки, электромагнитные колебания, которые могут нарушить работу устройства вплоть до выхода его из строя. С другой стороны, переходные процессы находят полезное практическое применение, например, в различного рода электронных генераторах. Все это обусловливает необходимость изучения методов анализа нестационарных режимов работы цепи.

Основные методы анализа переходных процессов в линейных цепях:

  1.  Классический метод, заключающийся в непосредственном интегрировании дифференциальных уравнений, описывающих электромагнитное состояние цепи.
  2.  Операторный метод, заключающийся в решении системы алгебраических уравнений относительно изображений искомых переменных с последующим переходом от найденных изображений к оригиналам.

6

1 Расчет переходных процессов с применением классического метода

Для электрической цепи (рисунок 1) и исходных данных (таблица 1) найти закон изменения тока  при замыкании ключа К. В цепи действует постоянная ЭДС .

Рисунок 1 – Схема электрическая принципиальная.

Таблица 1 – Исходные данные для проектирования

150

4

10

5

6

5

2

Рассчитаем начальные нулевые условия до коммутации.

Так как  следовательно цепь разомкнута и все напряжение источника напряжения E падает на конденсаторе:

Рисунок 2 – Схема электрическая принципиальная после коммутации.

Рассчитаем начальные условия после коммутации.

7

Так как , следовательно:

Так как  следовательно:

Закон изменения тока на индуктивности будет иметь вид:

Для нахождения закона изменения тока на индуктивности при переходном процессе необходимо рассчитать входное сопротивление цепи относительно источника постоянной ЭДС (рисунок 2).

Преобразуем его:

И в итоге получим:

Решив это уравнение, получим корни:

8

Так как корнями характеристического уравнения являются отрицательные числа, то закон изменения тока на индуктивности будет иметь вид экспоненциального затухания:

Составим систему уравнений по законам Кирхгофа:

Так как все токи все токи в начальный момент времени равны нулю, то:

Используя нулевые начальные условия и условия, рассчитаем константы интегрирования :

Откуда:

Следовательно, закон изменения напряжения на индуктивности имеет вид

9

Рисунок 3 – Закон изменения напряжения , рассчитанный классическим методом.

9

2 Расчет переходных процессов с применением операторного метода

Рассчитаем закон изменения напряжения  операторным методом. В решении будем использовать найденные по классическому методу корни характеристического уравнения , нулевые начальные условия и условия после коммутации.

Рисунок 4 – Схема электрическая принципиальная послекоммутационная

Для нахождения закона изменения напряжения  составим систему линейных уравнений по методу узловых напряжений:

Выразим коэффициенты данной системы уравнений:

Подставим числовые значения:

Рисунок 5 – Закон изменения тока , рассчитанный операторным методом


11

ЗАКЛЮЧЕНИЕ

В данном курсовом проекте были рассмотрены различные методы расчета переходных процессов в линейных электрических цепях. На основе исходных данных для проектирования (рисунок 1, таблица 1) в данном курсовом проекте был рассчитан закон изменения тока  классическим и операторным методами. Полученные результаты (рисунок 3, 5) не имеют значимых погрешностей, что говорит о возможности использования любого из рассмотренных методов для расчета переходных процессов в линейных электрических цепях.

12

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

  1.  Пудовкин, А.П. Основы теории цепей. Учебное пособие по основам теории цепей / А.П. Пудовкин и [др] – Издательство ТГТУ, 2008 – 90 с.
  2.  Попов, В.П. Основы теории цепей. Учебник для вузов / В.П. Попов – М.: Высшая школа, 2008 – 575 с.
  3.  Бессонов, Л.А. Линейные электрические цепи / Л.А. Бессонов – М.: Высшая школа, 1983 – 336 с.
  4.  Бирюков, В.Н. Сборник задач по теории цепей / В.Н. Бирюков и [др] – М.: Высшая школа, 1985 – 239 с.
  5.  Лосев, А.К. Теория линейных электрических цепей / А.К. Лосев – М.: Высшая школа, 1987 – 512 с.
  6.  Шебес, М.Р. Задачник по теории линейных электрических цепей / М.Р. Шебес – М.: Высшая школа, 1990 – 488с.

 

А также другие работы, которые могут Вас заинтересовать

22978. Переривання 5.91 MB
  Організація переривань Все починається з того що ЗП виставляє сигнал високого рівня логічну одиницю на вхід INT мікропроцесора. Ці дані будуть оброблятися мікропроцесором за підпрограмою обробки переривань яка повинна бути заздалегідь закладена у пам’ять мікропроцесора . Замість цього в лічильник команд заноситься адреса команди з якої починається підпрограма обробки переривань. Лише після цього стає можливим введення даних з ЗП і старт підпрограми обробки переривань цих даних.
22979. Прямий доступ до пам’яті (ПДП) 3.8 MB
  Контролер ПДП Забезпечити роботу в режимі захоплення шин можна за допомогою логічних схем та тригерів саме так це зроблено наприклад у €œМікролабі€ але зручніше скористатися спеціальною ВІС контролером прямого доступу до пам’яті КПДП. Працює КПДП в двох сильно відмінних один від одного режимах: в режимі програмування коли мікропроцесор €œзакладає€ в нього необхідні інструкції і в режимі обміну даними між зовнішнім пристроєм і ОЗП. Схематичне зображення ІМС КПДП типу КР580ВТ57 подано на рис. В режимі програмування вони...
22980. Клавіатура і індикація 5.36 MB
  ОЗП індикації являє собою область операційної пам’яті в якій стільки комірок скільки знаків може бути розміщено на екрані. Побудова знаків Знаки на екрані дисплею будуються за мозаїчним принципом. Знакоформувач Знакоформувач являє собою ПЗП в якому закладена інформація про структуру утворюваних ним знаків. Таким чином ці три ІМС можуть створювати 96 різних знаків символів.
22981. Робота зі співпроцесором 3.19 MB
  Обгрунтування необхідності співпроцесора Хоча мікропроцесор К1810ВМ86 оперує з 16розрядними числами відносна точність його обчислень не дуже висока. Такий допоміжний процесор має назву співпроцесора. Включення співпроцесора Для спільної роботи зі співпроцесором мікропроцесор МП86 слід включити у максимальний режим = 0.
22982. Тенденції у розвитку мікропроцесорної техніки 1011.5 KB
  Другий шлях полягає навпаки у роздрібненні секціонуванні мікропроцесора на окремі функціональні блоки і модулі кожний з яких виконує свої операції: операційний блок блок мікрокомандного керування блок пам’яті мікрокоманд та інше. Його система команд майже цілком співпадає з системою команд МП80 і відрізняється від неї лише декількома додатковими командами про які мова йтиме далі. У апаратному відношенні МП85 містить всі ті ж блоки що і МП80 але має крім того: блок керування перериваннями котрий розширює можливість звернення до...
22983. Система команд та методи адресації в мікропроцесорі КР1810ВМ86 1.05 MB
  Серед цього списку можна виявити що деякі команди не змінили ані форми ані змісту наприклад HLT NOP STC IN OUT JMPCALL тощо. Деякі команди зберегли свій зміст але мають дещо іншу мнемоніку: для МП80 INR DCR ANA ORA XRA JZ JNZ JC JNC для МП86 INC DEC AND OR XOR JE JNE JB JNB З’явилися принципово нові команди пoв’язані з новими можливостями МП86: MUL множення; DIV ділення; NEG утворення доповняльного коду; NOTінверсія; TEST операція І без фіксації результату тільки заради...
22984. Мультипроцесорні системи 4.79 MB
  Дійсно звернення до пам’яті або до зовнішніх пристроїв та захоплення системної шини дозволяється одночасно лише одному з процесорів тоді як останні повинні в цей час переробляти раніш одержані дані або знаходитись в режимі очікування. Такий часовий розподіл загальних ресурсів системи має назву арбітражу системної шини і виконується групою пристроїв спеціальних ІМС так званих арбітрів шини. Арбітр шини дозволяє захоплення системної шини лише одному з процесорів що виставили запит тому котрий посідає найвищого пріоритету і...
22985. Мікропроцесори 80386 і 80486 4.79 MB
  Це дозволяє йому здійснювати обмін з пам’яттю зі швидкістю до 32 Мбайт сек і виконувати до 5 мільйонів операцій у секунду MIPS. Отже під час виконання одної команди відбувається декодування другої а третя видобувається з пам’яті. Усі можливості МП386 мультипрограмність віртуальна пам’ять захист пріоритети зповна відкриваються лише в захищеному режимі. У порівнянні з МП286 у МП386 існують істотні відміни в організації віртуальної пам’яті.
22986. Поняття про RISC-процесори. Процесори п’ятого та шостого поколінь 6.22 MB
  Процесори п’ятого та шостого поколінь Поняття про RISCпроцесори Якісний стрибок у розвитку мікропроцесорних систем відбувся з появою мікропроцесора 8086. Такі процесори і комп’ютери дістали назву RISC процесорів та RISC комп’ютерів на відміну від процесорів та комп’ютерів зі складною системою команд Complex Instruction Set Computer CISC комп’ютер. Перший €œсправжній€ RISC комп’ютер було створено наприкінці 70х років в університеті Берклі.