4981

Оптимальное проектирование процессов транспортировки

Контрольная

Логистика и транспорт

По картографическому материалу составить: а) граф сложного перекрестка с фиктивными дугами б) модель транспортной сети (ст. метро Курская - ст. метро Чистые пруды) Определить кратчайшее расстояние для модели трансп...

Русский

2012-11-30

118.5 KB

17 чел.

Вариант 41

1. По картографическому материалу составить:

а) граф сложного перекрестка с фиктивными дугами;

б) модель транспортной сети  (ст. метро "Курская" -  ст. метро "Чистые пруды ")

2. Определить кратчайшее расстояние для модели транспортной сети.

3. Построить схему кратчайшего пути для модели транспортной сети.

Рис. 1. Сложный перекресток

1 а. Составление графа сложного перекрёстка

Модель сложного перекрёстка (развязки дорог) представляется в виде графа. Составление графа сложного перекрёстка начинаем с размещения вершин, которые, в нашем случае, присваиваются пересечениям дорог (перекрёсткам). Затем связываем вершины рёбрами и дугами. При этом учитываем все проезды, имеющие усовершенствованное покрытие. Затем отображаем на модели сложного перекрёстка особенности организации дорожного движения с помощью ориентированных и неориентированных рёбер. Главной особенностью дорожного движения нашей транспортной развязки является невозможность левого поворота на перекрёстках дорог данной системы. Модель транспортной сети сложного перекрёстка представляем на рисунке 2.

1 б. Составление модели транспортной сети

Составление модели транспортной сети производим аналогично составления модели сложного перекрёстка. Для начала определяем границы микрорайона данной транспортной сети, руководствуясь рекомендациями методического пособия и, исходя из возможных маршрутов передвижения легкового автомобиля из заданной точки в заданном направлении. Для упрощения выполнения следующего задания, связанного с нахождением кратчайшего маршрута, в модель транспортной сети включаем только те маршруты, по которым возможно передвижение в указанном направлении и исключаем те маршруты, по которым передвижение в указанном направлении невозможно. Модель транспортной сети представляем в виде графа, вершинами которого являются пересечения дорог и улиц, по которым выполняется передвижение от указанной до заданной точки в рамках определённого нами микрорайона, а рёбрами являются сами улицы и дороги. Граф данной транспортной сети является ориентированным, т. к. его рёбра ориентированы по направлению. Вершины нашего графа пронумерованы цифрами, начальной вершине присвоен номер 1, а конечной номер, его рёбра характеризуются цифрами, значение которых определяется расстояниями между вершинами в м.

Рис. 2. Модель сложного перекрестка

 

 

 

2 Определение кратчайшего маршрута движения

При определении кратчайших маршрутов от заданной вершины все множество вершин сети разбивается на три группы. В I группу входят вершины, до которых кратчайшие расстояния  уже найдены; во II - вершины, смежные  (связанные с другой) с вершинами I группы; в III- все остальные вершины. Нахождение кратчайших расстояний от вершины I до всех остальных для сети (рис. 2) состоит из нескольких однотипных этапов. Перед первым этапом в I группу входит только начальная вершина Кратчайшее расстояние до нее равно 0. Остальные вершины остальные входят в группу. Расстояния до них не определены и равны большому числу, которое обозначим буквой М (табл. 1).  В последней строке таблицы фиксируется номера вершин, предшествующих данным в кратчайшем расстоянии до них. У вершины 1 нет предшествующих   поскольку она является начальной. У остальных предшествующие вершины пока не определены.  В результате все элементы последней строки равны нулю.

Таблица  1  Анализ транспортной сети

Номер  вершины

1

2

3

4

5

Расстояние

0

М

М

М

М

Номер предшествующей вершины

0

0

0

0

0

Этап I  На рис. 2 найдем вершины, смежные с вершиной 1. С ней смежны вершины 2, 4, которые относятся к группе II. Расстояние до них определяется по формуле

   dj = rj+lij                                                                   (1)

где dj - расстояние от начальной до j-й вершины; ri - кратчайшее расстояние от начальной до i-й вершины; lij - длина ребра, связывающего i-ю вершину с j-й. Подставив значение формулы (1), получим:

d2 = r1+ l1,2 = 0 + 25=25;

d4 = r1+ l4,1= 0 + 19=19

Ищем минимальное расстояние до вершин, входящих во  II группу им оказывается расстояние до вершины 4. Она переводится в I группу Полученный  результат запишем в табл. 2.

Таблица  2  Анализ транспортной сети

Номер  вершины

1

2

3

4

5

Расстояние

0

25

М

19

М

Номер предшествующей вершины

0

1

0

1

0

Этап II Ищем вершины, смежные с вершиной 4. Это вершина 3. Вершину 1 рассматривать не будем, так как она входит в I группу. Для остальных вычислим расстояние по формуле (1):

d3 = r4+ l4,3 = 19 + 24=43;

Вершины 3 переходит из III группы во II. Для неё предшествующей становится вершина 4 (табл. 3).

          Таблица  3  Анализ транспортной сети

Номер  вершины

1

2

3

4

5

Расстояние

0

25

43

19

М

Номер предшествующей вершины

0

1

4

1

0

Этап III Определяем кратчайшее расстояние до вершины 2

d2 = r3+ l3,2 = 43 + 20=63

Полученное расстояние больше предыдущего, поэтому оставим его прежним.

Таблица  4 Анализ транспортной сети

Номер  вершины

1

2

3

4

5

Расстояние

0

25

43

19

М

Номер предшествующей вершины

0

1

4

1

0

Вершина 2 переходит в I группу

Этап IV Ищем вершины, смежные с вершиной 2. Это вершины 3 и 5.

d3 = r2+ l2,3 = 25 + 20=45;

             d5 = r2+ l5,2 = 25 + 30=55;

Полученное расстояние для вершины 3 больше предыдущего, поэтому оставим его прежним. Окончательные результаты поместим в таблицу 5  

       Таблица  5 Анализ транспортной сети

Номер  вершины

1

2

3

4

5

Расстояние

0

25

43

19

55

Номер предшествующей вершины

0

1

4

1

2

3. Построение схемы кратчайшего пути для модели транспортной сети

Часто нужно знать не только расстояние, но и кратчайший путь из исходной вершины в данную. Для этого используется последняя строка табл. 7.  В ней для каждой вершины указана предшествующая в кратчайшем пути. Перебирая предшествующие вершины, обязательно придем в начальную точку.

Пусть, например, нужно определить кратчайший путь из вершины 1 в вершину 5. Вершине 5 предшествует вершина 2, вершине 2 - вершина 1. Таким образом, в данном примере кратчайший путь проходит через вершины 1, 2, 5.

На рис. 3 изображены кратчайшие пути до всех вершин от вершины 1.
Применение описанного метода позволяет получать таблицы кратчайших расстояний   между   заданными   точками. Их используют в   качестве унифицированного материала для планирования и учета перевозок. Кроме того, модели транспортных сетей и таблицы расстояний используются для различных сметно-финансовых расчетов, определения рационального размещения предприятий, решения ряда градостроительных проблем и т.д.

Рис. 3. Схема кратчайшего пути по маршруту  ст. метро "Курская" -  ст. метро "Чистые пруды "

 

 

 

Вершины

Расстояние

Вершины Ki

K1

K2

K3

K4

K5

Kj

 

K1

 

K2

 

24

K3

 

20

K4

 

19

24

K5

 

30


 

А также другие работы, которые могут Вас заинтересовать

43333. Интеграл Лебега-Стилтьеса, функции с ограниченным изменение 551 KB
  Рассмотрим подробнее заряды на -алгебре, порожденной полуинтервалами на отрезке. Каждому заряду (как и мере) поставим в соответствие функцию g. Опишем класс функций на , которые соответствуют зарядам. Построение заряда аналогично построению меры Лебега-Стилтьеса по неубывающей функции.
43335. Підсилювач низької частоти 5.68 MB
  Розрахуємо максимальну напругу в навантаження по формулі: В 1 Знайдемо максимальний струм що проходить через навантаження: 2 Розрахуємо необхідний коефіцієнт підсилення підсилювача за формулою: 3 Знайдемо орієнтовну кількість каскадів попереднього підсилення за наступною формулою: 4 Отриману за формулою 4 кількість каскадів округляють до найближчого цілого непарного числа в більшу сторону так як схема з СЕ дає зсув фази на 180 n = 3 Вихідний каскад ставиться на виході підсилювача і забезпечує підсилення...
43336. Регіональні проблеми безробіття в Україні 267.5 KB
  Як економічна категорія безробіття відображає економічні відносини щодо вимушеної незайнятості працездатного населення. Актуальність теми полягає в тому що структурні зрушення які відбуваються на сучасному етапі розвитку національної економіки призводять до суттєвих негативних змін на ринку праці зокрема до достатньо значних обсягів і рівня безробіття економічно активного населення і як наслідок до неефективного використання робочої сили. При цьому розвиток підприємництва малого і середнього бізнесу та інші ринкові перетворення не...
43337. Обхід дерев 22.23 MB
  Теоретична частина Обробка даних у вершинах дерева Лівий спадний обхід Лівий висхідний обхід Лівий змішаний обхід Приклад лівого спадного обходу LPreorder 10 Перелік використаної літератури 11 Код програми реалізації обходу дерев мовою С. На сьогоднішній день дерева є найбільш поширеною структурою. Вони популярні серед людей з технічним напрямком занять і не дарма: дерева забезпечують найшвидші і найоптимальніші умови для знаходження елемента серед інших в певній структурі. Звичайно існують...
43339. Проектування фундаментів під 9-поверхову блок секцію на 36 квартир 530.5 KB
  Результати лабораторних визначень фізикомеханічних характеристик цього ґрунту наведені в табл. Результати лабораторних визначень фізикомеханічних характеристик ґрунту № 102 Таблиця 3 № ґрунту Фізикомеханічні характеристики ґрунту ρs г см3 ρ г см3 W WL WP E МПа φ град. Остаточна назва ґрунту: суглинок твердий Визначаємо розрахункові характеристики ґрунту питому вагу {м с2 прискорення вільного падіння} кут внутрішнього тертя питоме зчеплення для розрахунків за Ію і ІІю групами граничних станів. Розрахункове значення...
43340. Розробка веб-сайту електронної бібліотеки 394.5 KB
  Завданням даної курсової роботи є розробка веб-сайту електронної бібліотеки. Веб-сайт повинен надавати можливість користувачам виконувати навігацію по категоріям та завантажувати необхідні їм книги. Також необхідний пошук по імені автора, назві книги та по опису. Для наповнення бібліотеки та редагування її вмісту необхідно реалізувати адміністративну частину сайту
43341. РОЗРОБКА ПРОГРАМНОГО КОМПЛЕКСУ ПО ЗНАХОДЖЕННЮ НАЙКОРОТШИХ МАРШРУТІВ НА ДТМ 871 KB
  Транспортні задачі, у яких вершинами графа є пункти, а ребрами – дороги (автомобільні, залізні й ін.) і/або інші транспортні (наприклад, авіаційні) маршрути. Інший приклад – мережі постачання (енергопостачання, газопостачання, постачання товарами і т.д.), у яких вершинами є пункти виробництва й споживання, а ребрами – можливі маршрути переміщення (лінії електропередач, газопроводи, дороги і т.д.).