4981

Оптимальное проектирование процессов транспортировки

Контрольная

Логистика и транспорт

По картографическому материалу составить: а) граф сложного перекрестка с фиктивными дугами б) модель транспортной сети (ст. метро Курская - ст. метро Чистые пруды) Определить кратчайшее расстояние для модели трансп...

Русский

2012-11-30

118.5 KB

17 чел.

Вариант 41

1. По картографическому материалу составить:

а) граф сложного перекрестка с фиктивными дугами;

б) модель транспортной сети  (ст. метро "Курская" -  ст. метро "Чистые пруды ")

2. Определить кратчайшее расстояние для модели транспортной сети.

3. Построить схему кратчайшего пути для модели транспортной сети.

Рис. 1. Сложный перекресток

1 а. Составление графа сложного перекрёстка

Модель сложного перекрёстка (развязки дорог) представляется в виде графа. Составление графа сложного перекрёстка начинаем с размещения вершин, которые, в нашем случае, присваиваются пересечениям дорог (перекрёсткам). Затем связываем вершины рёбрами и дугами. При этом учитываем все проезды, имеющие усовершенствованное покрытие. Затем отображаем на модели сложного перекрёстка особенности организации дорожного движения с помощью ориентированных и неориентированных рёбер. Главной особенностью дорожного движения нашей транспортной развязки является невозможность левого поворота на перекрёстках дорог данной системы. Модель транспортной сети сложного перекрёстка представляем на рисунке 2.

1 б. Составление модели транспортной сети

Составление модели транспортной сети производим аналогично составления модели сложного перекрёстка. Для начала определяем границы микрорайона данной транспортной сети, руководствуясь рекомендациями методического пособия и, исходя из возможных маршрутов передвижения легкового автомобиля из заданной точки в заданном направлении. Для упрощения выполнения следующего задания, связанного с нахождением кратчайшего маршрута, в модель транспортной сети включаем только те маршруты, по которым возможно передвижение в указанном направлении и исключаем те маршруты, по которым передвижение в указанном направлении невозможно. Модель транспортной сети представляем в виде графа, вершинами которого являются пересечения дорог и улиц, по которым выполняется передвижение от указанной до заданной точки в рамках определённого нами микрорайона, а рёбрами являются сами улицы и дороги. Граф данной транспортной сети является ориентированным, т. к. его рёбра ориентированы по направлению. Вершины нашего графа пронумерованы цифрами, начальной вершине присвоен номер 1, а конечной номер, его рёбра характеризуются цифрами, значение которых определяется расстояниями между вершинами в м.

Рис. 2. Модель сложного перекрестка

 

 

 

2 Определение кратчайшего маршрута движения

При определении кратчайших маршрутов от заданной вершины все множество вершин сети разбивается на три группы. В I группу входят вершины, до которых кратчайшие расстояния  уже найдены; во II - вершины, смежные  (связанные с другой) с вершинами I группы; в III- все остальные вершины. Нахождение кратчайших расстояний от вершины I до всех остальных для сети (рис. 2) состоит из нескольких однотипных этапов. Перед первым этапом в I группу входит только начальная вершина Кратчайшее расстояние до нее равно 0. Остальные вершины остальные входят в группу. Расстояния до них не определены и равны большому числу, которое обозначим буквой М (табл. 1).  В последней строке таблицы фиксируется номера вершин, предшествующих данным в кратчайшем расстоянии до них. У вершины 1 нет предшествующих   поскольку она является начальной. У остальных предшествующие вершины пока не определены.  В результате все элементы последней строки равны нулю.

Таблица  1  Анализ транспортной сети

Номер  вершины

1

2

3

4

5

Расстояние

0

М

М

М

М

Номер предшествующей вершины

0

0

0

0

0

Этап I  На рис. 2 найдем вершины, смежные с вершиной 1. С ней смежны вершины 2, 4, которые относятся к группе II. Расстояние до них определяется по формуле

   dj = rj+lij                                                                   (1)

где dj - расстояние от начальной до j-й вершины; ri - кратчайшее расстояние от начальной до i-й вершины; lij - длина ребра, связывающего i-ю вершину с j-й. Подставив значение формулы (1), получим:

d2 = r1+ l1,2 = 0 + 25=25;

d4 = r1+ l4,1= 0 + 19=19

Ищем минимальное расстояние до вершин, входящих во  II группу им оказывается расстояние до вершины 4. Она переводится в I группу Полученный  результат запишем в табл. 2.

Таблица  2  Анализ транспортной сети

Номер  вершины

1

2

3

4

5

Расстояние

0

25

М

19

М

Номер предшествующей вершины

0

1

0

1

0

Этап II Ищем вершины, смежные с вершиной 4. Это вершина 3. Вершину 1 рассматривать не будем, так как она входит в I группу. Для остальных вычислим расстояние по формуле (1):

d3 = r4+ l4,3 = 19 + 24=43;

Вершины 3 переходит из III группы во II. Для неё предшествующей становится вершина 4 (табл. 3).

          Таблица  3  Анализ транспортной сети

Номер  вершины

1

2

3

4

5

Расстояние

0

25

43

19

М

Номер предшествующей вершины

0

1

4

1

0

Этап III Определяем кратчайшее расстояние до вершины 2

d2 = r3+ l3,2 = 43 + 20=63

Полученное расстояние больше предыдущего, поэтому оставим его прежним.

Таблица  4 Анализ транспортной сети

Номер  вершины

1

2

3

4

5

Расстояние

0

25

43

19

М

Номер предшествующей вершины

0

1

4

1

0

Вершина 2 переходит в I группу

Этап IV Ищем вершины, смежные с вершиной 2. Это вершины 3 и 5.

d3 = r2+ l2,3 = 25 + 20=45;

             d5 = r2+ l5,2 = 25 + 30=55;

Полученное расстояние для вершины 3 больше предыдущего, поэтому оставим его прежним. Окончательные результаты поместим в таблицу 5  

       Таблица  5 Анализ транспортной сети

Номер  вершины

1

2

3

4

5

Расстояние

0

25

43

19

55

Номер предшествующей вершины

0

1

4

1

2

3. Построение схемы кратчайшего пути для модели транспортной сети

Часто нужно знать не только расстояние, но и кратчайший путь из исходной вершины в данную. Для этого используется последняя строка табл. 7.  В ней для каждой вершины указана предшествующая в кратчайшем пути. Перебирая предшествующие вершины, обязательно придем в начальную точку.

Пусть, например, нужно определить кратчайший путь из вершины 1 в вершину 5. Вершине 5 предшествует вершина 2, вершине 2 - вершина 1. Таким образом, в данном примере кратчайший путь проходит через вершины 1, 2, 5.

На рис. 3 изображены кратчайшие пути до всех вершин от вершины 1.
Применение описанного метода позволяет получать таблицы кратчайших расстояний   между   заданными   точками. Их используют в   качестве унифицированного материала для планирования и учета перевозок. Кроме того, модели транспортных сетей и таблицы расстояний используются для различных сметно-финансовых расчетов, определения рационального размещения предприятий, решения ряда градостроительных проблем и т.д.

Рис. 3. Схема кратчайшего пути по маршруту  ст. метро "Курская" -  ст. метро "Чистые пруды "

 

 

 

Вершины

Расстояние

Вершины Ki

K1

K2

K3

K4

K5

Kj

 

K1

 

K2

 

24

K3

 

20

K4

 

19

24

K5

 

30


 

А также другие работы, которые могут Вас заинтересовать

49774. Программа для имитационного моделирования системы массового обслуживания 1.7 MB
  В системе интервалы времени между поступлением требований являются независимыми случайными величинами со средним временем 0. которое участвует при генерировании массива содержащего все периоды времени между поступлениями требований. является случайной величиной некоррелированной с интервалами поступления требований. Оценке подлежат следующие параметры: коэффициент использования системы ρ; средняя задержка в очереди d; среднее время ожидания w; среднее по времени число требований в очереди Q; среднее по времени число требований...
49775. Циклическаю система массового обслуживания с квантами 1.29 MB
  Емкость накопителя требований r равна 44 дисциплина обслуживания – циклическая с квантом q = 5 секунд. В системе интервалы времени между поступлениями требований являются независимыми случайными величинами со средним временем = 20 секунд. Время обслуживания является случайной величиной некоррелированной с интервалами поступления требований. Среднее значение обслуживания требований – = 50 секундам.
49776. Выпрямительный агрегат ПВЭ -5А-У1 286.9 KB
  Преобразователь выпрямительный типа ПВЭ-5А-У1 наружной установки, предназначен для преобразования переменного тока в выпрямленный, и питания контактной сети электрифицированных железных дорог.
49777. Факторный анализ для выяснения влияний факторов на отклики и выведения уравнений регрессии 1.54 MB
  Поток событий ПС называется последовательность событий происходящих последовательно в случайные моменты времени. Такую модель можно проиграть во времени как для одного испытания так и заданного их множества. В нашем случае необходимо изучить систему массового со следующими параметрами: средний интервал времени между поступлениями требований равен 10 секунд среднее время обработки требования равно 25 секунд количество обрабатывающих устройств равно 5 дисциплина обслуживания – FIFO. В системе интервалы времени между поступлениями...
49778. Имитационная модель двигателя внутреннего сгорания 225 KB
  В отличие от традиционного аналитического моделирование принцип имитационного моделирования основывается на том, что математическая модель воспроизводит процесс функционирования во времени, причем имитируются элементарные события, протекающие в системе с сохранением логики их взаимодействия.
49780. Анализ межпроцессных взаимодействий 645 KB
  Длительность работы обслуживающих задач составляет один квант модельного времени. Система вызывает эту задачу каждые 10 квант модельного времени. Длительность замещения одной страницы составляет четыре кванта модельного времени.
49781. Расчет компаратора с гистерезисной характеристикой для сравнения однополярных сигналов 885.5 KB
  Исходное задание Анализ технического задания Описание принципа работы схемы Расчет схемы Расчет точности параметров устройства или его частей Описание принципа работы микросхемы Список использованной литературы...