4981

Оптимальное проектирование процессов транспортировки

Контрольная

Логистика и транспорт

По картографическому материалу составить: а) граф сложного перекрестка с фиктивными дугами б) модель транспортной сети (ст. метро Курская - ст. метро Чистые пруды) Определить кратчайшее расстояние для модели трансп...

Русский

2012-11-30

118.5 KB

17 чел.

Вариант 41

1. По картографическому материалу составить:

а) граф сложного перекрестка с фиктивными дугами;

б) модель транспортной сети  (ст. метро "Курская" -  ст. метро "Чистые пруды ")

2. Определить кратчайшее расстояние для модели транспортной сети.

3. Построить схему кратчайшего пути для модели транспортной сети.

Рис. 1. Сложный перекресток

1 а. Составление графа сложного перекрёстка

Модель сложного перекрёстка (развязки дорог) представляется в виде графа. Составление графа сложного перекрёстка начинаем с размещения вершин, которые, в нашем случае, присваиваются пересечениям дорог (перекрёсткам). Затем связываем вершины рёбрами и дугами. При этом учитываем все проезды, имеющие усовершенствованное покрытие. Затем отображаем на модели сложного перекрёстка особенности организации дорожного движения с помощью ориентированных и неориентированных рёбер. Главной особенностью дорожного движения нашей транспортной развязки является невозможность левого поворота на перекрёстках дорог данной системы. Модель транспортной сети сложного перекрёстка представляем на рисунке 2.

1 б. Составление модели транспортной сети

Составление модели транспортной сети производим аналогично составления модели сложного перекрёстка. Для начала определяем границы микрорайона данной транспортной сети, руководствуясь рекомендациями методического пособия и, исходя из возможных маршрутов передвижения легкового автомобиля из заданной точки в заданном направлении. Для упрощения выполнения следующего задания, связанного с нахождением кратчайшего маршрута, в модель транспортной сети включаем только те маршруты, по которым возможно передвижение в указанном направлении и исключаем те маршруты, по которым передвижение в указанном направлении невозможно. Модель транспортной сети представляем в виде графа, вершинами которого являются пересечения дорог и улиц, по которым выполняется передвижение от указанной до заданной точки в рамках определённого нами микрорайона, а рёбрами являются сами улицы и дороги. Граф данной транспортной сети является ориентированным, т. к. его рёбра ориентированы по направлению. Вершины нашего графа пронумерованы цифрами, начальной вершине присвоен номер 1, а конечной номер, его рёбра характеризуются цифрами, значение которых определяется расстояниями между вершинами в м.

Рис. 2. Модель сложного перекрестка

 

 

 

2 Определение кратчайшего маршрута движения

При определении кратчайших маршрутов от заданной вершины все множество вершин сети разбивается на три группы. В I группу входят вершины, до которых кратчайшие расстояния  уже найдены; во II - вершины, смежные  (связанные с другой) с вершинами I группы; в III- все остальные вершины. Нахождение кратчайших расстояний от вершины I до всех остальных для сети (рис. 2) состоит из нескольких однотипных этапов. Перед первым этапом в I группу входит только начальная вершина Кратчайшее расстояние до нее равно 0. Остальные вершины остальные входят в группу. Расстояния до них не определены и равны большому числу, которое обозначим буквой М (табл. 1).  В последней строке таблицы фиксируется номера вершин, предшествующих данным в кратчайшем расстоянии до них. У вершины 1 нет предшествующих   поскольку она является начальной. У остальных предшествующие вершины пока не определены.  В результате все элементы последней строки равны нулю.

Таблица  1  Анализ транспортной сети

Номер  вершины

1

2

3

4

5

Расстояние

0

М

М

М

М

Номер предшествующей вершины

0

0

0

0

0

Этап I  На рис. 2 найдем вершины, смежные с вершиной 1. С ней смежны вершины 2, 4, которые относятся к группе II. Расстояние до них определяется по формуле

   dj = rj+lij                                                                   (1)

где dj - расстояние от начальной до j-й вершины; ri - кратчайшее расстояние от начальной до i-й вершины; lij - длина ребра, связывающего i-ю вершину с j-й. Подставив значение формулы (1), получим:

d2 = r1+ l1,2 = 0 + 25=25;

d4 = r1+ l4,1= 0 + 19=19

Ищем минимальное расстояние до вершин, входящих во  II группу им оказывается расстояние до вершины 4. Она переводится в I группу Полученный  результат запишем в табл. 2.

Таблица  2  Анализ транспортной сети

Номер  вершины

1

2

3

4

5

Расстояние

0

25

М

19

М

Номер предшествующей вершины

0

1

0

1

0

Этап II Ищем вершины, смежные с вершиной 4. Это вершина 3. Вершину 1 рассматривать не будем, так как она входит в I группу. Для остальных вычислим расстояние по формуле (1):

d3 = r4+ l4,3 = 19 + 24=43;

Вершины 3 переходит из III группы во II. Для неё предшествующей становится вершина 4 (табл. 3).

          Таблица  3  Анализ транспортной сети

Номер  вершины

1

2

3

4

5

Расстояние

0

25

43

19

М

Номер предшествующей вершины

0

1

4

1

0

Этап III Определяем кратчайшее расстояние до вершины 2

d2 = r3+ l3,2 = 43 + 20=63

Полученное расстояние больше предыдущего, поэтому оставим его прежним.

Таблица  4 Анализ транспортной сети

Номер  вершины

1

2

3

4

5

Расстояние

0

25

43

19

М

Номер предшествующей вершины

0

1

4

1

0

Вершина 2 переходит в I группу

Этап IV Ищем вершины, смежные с вершиной 2. Это вершины 3 и 5.

d3 = r2+ l2,3 = 25 + 20=45;

             d5 = r2+ l5,2 = 25 + 30=55;

Полученное расстояние для вершины 3 больше предыдущего, поэтому оставим его прежним. Окончательные результаты поместим в таблицу 5  

       Таблица  5 Анализ транспортной сети

Номер  вершины

1

2

3

4

5

Расстояние

0

25

43

19

55

Номер предшествующей вершины

0

1

4

1

2

3. Построение схемы кратчайшего пути для модели транспортной сети

Часто нужно знать не только расстояние, но и кратчайший путь из исходной вершины в данную. Для этого используется последняя строка табл. 7.  В ней для каждой вершины указана предшествующая в кратчайшем пути. Перебирая предшествующие вершины, обязательно придем в начальную точку.

Пусть, например, нужно определить кратчайший путь из вершины 1 в вершину 5. Вершине 5 предшествует вершина 2, вершине 2 - вершина 1. Таким образом, в данном примере кратчайший путь проходит через вершины 1, 2, 5.

На рис. 3 изображены кратчайшие пути до всех вершин от вершины 1.
Применение описанного метода позволяет получать таблицы кратчайших расстояний   между   заданными   точками. Их используют в   качестве унифицированного материала для планирования и учета перевозок. Кроме того, модели транспортных сетей и таблицы расстояний используются для различных сметно-финансовых расчетов, определения рационального размещения предприятий, решения ряда градостроительных проблем и т.д.

Рис. 3. Схема кратчайшего пути по маршруту  ст. метро "Курская" -  ст. метро "Чистые пруды "

 

 

 

Вершины

Расстояние

Вершины Ki

K1

K2

K3

K4

K5

Kj

 

K1

 

K2

 

24

K3

 

20

K4

 

19

24

K5

 

30


 

А также другие работы, которые могут Вас заинтересовать

9333. Последнее воскресенье перед Великим постом. - Прощеное воскресенье 67.5 KB
  Прощеное воскресенье Последнее воскресенье перед Великим постом. - Прощеное воскресенье Прощеное воскресенье Прощёное воскресенье - последнее воскресенье перед Великим постом, последний день Масленицы. Этот день еще называется сыропустом, пот...
9334. Метеориты и Химический состав земной коры 36.5 KB
  Метеориты и Химический состав земной коры Имеются убедительные доказательства того, что Земля в целом имеет элементный состав, близкий к составу каменных метеоритов (хондритов) (Рингвуд ,1979). Различие химического состава метеоритов и поверхн...
9335. Этапы эмиссии ЦБ 28.5 KB
  Этапы эмиссии ЦБ: Эмиссия ЦБ - это предусмотренный ФЗ-вом порядок действий эмитента по размещению эмиссионных ЦБ. Процедура эмиссии ЦБ включает в себя стадии: принятие решения о размещении ЦБ утверждение данного решения госуда...
9336. Понятие и виды инвестиций. Экономико-правовое содержание 42 KB
  Тема №1: Понятие и виды инвестиций. Источники. Понятие инвестиций. Экономико-правовое содержание. Инвестиции – происходит от слова инвестор - облачать, в широком смысле слова трактуется как вложение капитала в будущем. Вложение дене...
9337. Понятие, субъекты и объекты инвестиционной деятельности. Понятие инвестиционной деятельности и инвестиционного процесса 37 KB
  Инвестиционная деятельность - это вложения инвестиций, или инвестирования, а так же совокупность практических действий по реализации инвестиций. Таким образом, для законодателя понятие инвестирования и вложение инвестиций тождественно...
9338. Правовое регулирование инвестиционной деятельности в РФ 24.5 KB
  Тема: правовое регулирование инвестиционной деятельности в РФ. -1- Конституция РФ не содержит норм, прямо регулирующих инвестиционную деятельность, однако затрагивает вопросы финансового регулирования. В РФ гарантируется единое экономическое простра...
9339. ОБЩИЕ УСЛОВИЯ РАЗМЕЩЕНИЯ ПРОИЗВОДИТЕЛЬНЫХ СИЛ 472.5 KB
  РАЗДЕЛ 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ И ОБЩИЕ УСЛОВИЯ РАЗМЕЩЕНИЯ ПРОИЗВОДИТЕЛЬНЫХ СИЛ 1.1. Предмет, методы и практическое значение размещения производительных сил 1.1.1. Предмет курса размещение производительных сил Размещение производительных сил (Р...
9340. ПРОКУРОРСКИЙ НАДЗОР ЗА ЗАКОННОСТЬЮ ИСПОЛНЕНИЯ ПОСТАНОВЛЕНИЙ ПО ДЕЛАМ ОБ АДМИНИСТРАТИВНЫХ ПРАВОНАРУШЕНИЯХ 520.5 KB
  В методическом пособии рассматриваются вопросы прокурорского надзора за законностью исполнения постановлений по делам об административных правонарушениях. Дана характеристика законодательных и иных нормативных правовых актов, регулирующих указанную ...
9341. НОРМАЛЬНОЕ ПОЛЕ И ОПРЕДЕЛЕНИЕ АНОМАЛЬНОГО ПОТЕНЦИАЛА 428.5 KB
  НОРМАЛЬНОЕ ПОЛЕ И ОПРЕДЕЛЕНИЕ АНОМАЛЬНОГО ПОТЕНЦИАЛА текст лекций по геодезической гравиметрии ГЛАВА 1. НОРМАЛЬНОЕ ГРАВИТАЦИОННОЕ ПОЛЕ §1.1 ПОНЯТИЕ О НОРМАЛЬНОМ ПОЛЕ И СПОСОБАХ ЕГО ВЫБОРА При изучении гравитационного поля Земли обыч...