49855

Расчет вала електродвигателя

Курсовая

Производство и промышленные технологии

Вычисление частоты вращения вала электродвигателя Диаметр звездочки Частота вращения приводного вала Перeдаточное число для червячной передачи U=34.4 Частота вращения вала электродвигателя Выбирается двигатель АИР 80В4 с частотой вращения ротора и мощностью . Распределение мощности по валам: Частота вращения: Крутящий момент Скорость скольжения Выбираем материал третьей группы СЧ1532 Коэффициент нагрузки: Предварительное межосевое расстояние: Принимаем .1 аДля быстроходного вала из рекомендации выбрано: Выбираем Диаметр вала...

Русский

2014-01-16

890.5 KB

3 чел.

1 Выбор электродвигателя

1.1 Вычисление требуемой мощности двигателя

Вычисление требуемой мощности двигателя производится по формуле:

где  - мощность необходимая на выходе червячного редуктора,

-окружная сила на звездочке пластинчатого конвейера

- скорость движения цепи

- КПД механизма,

- КПД червячной передачи ,

- КПД пары подшипников качения (на приводном валу) 

- КПД муфты,

- КПД цепной передачи.

Принимаем

1.2 Вычисление частоты вращения вала электродвигателя

Диаметр звездочки

Частота вращения приводного вала

Перeдаточное число для червячной передачи  U=34.4

Частота вращения вала электродвигателя 

Выбирается двигатель АИР 80В4 с частотой вращения ротора  и мощностью .

Распределение мощности по валам:

Частота вращения:

Крутящий момент

Скорость скольжения

Выбираем материал третьей группы СЧ15-32

Коэффициент нагрузки:

Предварительное межосевое расстояние:

Принимаем .

Осевой модуль:

Принимаем .

Коэффициент диаметра червяка:

Принимаем .

Коэффициент смещения:

Углы подъема червяка:

Начальный:

Делительный угол подъема витка:

Корректировка

Коэффициент концентрации нагрузки:

Скоростной коэффициент

 

Скорость скольжения в зацеплении:

 

Допускаемое напряжение:

.

Расчетное напряжение:

 

КПД

 

Уточненное значение мощности на валу червяка

Силы в зацеплении червячной пары

Окружная сила на колесе и осевая сила ни червяке

 Окружная сила на червяке и осевая на колесе

Радиальная сила

Напряжения изгиба в зубьях червячного колеса

Проверка передачи на кратковременную пиковую нагрузку

Пиковый момент на валу червячного колеса

 

Пиковое контактное напряжение на рабочих поверхностях зубьев

Пиковое напряжение изгиба зубьев червячного колеса

 

Проверка редуктора на нагрев

 

Геометрические размеры червячной передачи

Червяк:

 

Червячное колесо

 


2. Проектирование редуктора

2.1Предварительный расчет диаметров валов

рис.1

а)Для быстроходного вала из рекомендации выбрано:

Выбираем

Диаметр вала посадочных мест подшипников:

где  - высота заплечика для конического конца вала.

Диаметр основной части вала рассчитан по формуле [1, стр. 42]:

где  - координата фаски подшипника

Но так как червяк полый с глухим отверстием и шпоночным пазом для шпоночного соединения с электродвигателем ,то та часть, которая соединяется с валом электродвигателя должна иметь больший диаметр. А именно ,больше диаметра вала электродвигателя(d=26мм) .Диаметр червяка посадочного места подшипника для этой части вала принимается

Диаметр основной части вала рассчитан по формуле [1, стр. 42]:

где  - координата фаски подшипника

Выбран: .

б)Для вала червячного колеса

Выбран: .

Выбран: .

2.2 Расчет расстояний между деталями редуктора.

Зазор до боковой стенки рассчитан по формуле:

где  - предварительная длина корпуса.

Округляю в большую сторону: .

2.3 Расчет шпоночного соединения

Для соединения вала и червячного колеса выбрано шпоночное соединение.(рис.3)

Рис.3

- диаметр вала,

- момент на валу.

Из атласа «Детали машин» для заданного диаметра вала нахожу размеры поперечного сечения шпонки

величина выступа шпонки из вала.

Допускаемое напряжение на смятие

Принимаю  

2.4 Выбор типа подшипников и схемы установки
Для червячного редуктора выбраны радиально упорные подшипники, так как  действует осевая сила в червячном зацеплении.

Схема установки «враспор».

2.5 Подбор подшипников качения на заданный ресурс

Тихоходный вал червячного колеса

2.5.1.1Для быстроходного вала-червяка червячного редуктора выбраны 2 роликовых конических подшипников лёгкой серии (7208А) и шариковый радиальный (208).  

а)Подшипник 7208А

Динамическая грузоподъемность: .

Статическая грузоподъемность: .

Диаметр вала под подшипник: .

Диаметр внешнего кольца подшипника: .

Наибольшая ширина подшипника: .

Ширина подшипника: .

б)Подшипник 208

Динамическая грузоподъемность: .

Статическая грузоподъемность: .

Диаметр вала под подшипник: .

Диаметр внешнего кольца подшипника: .

Наибольшая ширина подшипника: .

Ширина подшипника: .


- радиальная сила в зацеплении,

- окружная сила,

-осевая сила,

2.5.1.2 Реакции в горизонтальной плоскости

    

рис.7

Нагрузка в середине вала:

рис.8

Реакции от радиальной силы:

Нагрузка в середине вала:

рис.9

Реакции от осевой силы:

Так как  то буду считать, что момент приложен в середине вала.

Нахожу реакции в опорах:

рис.10

Так как подшипник установлен «враспор» из рис.10:

2.5.1.3. Расчет ресурса подшипника

а)Подшипник 7208А(на рисунке 10 т.А)

Расчёт на статическую грузоподъёмность:

Нахожу эквивалентную статическую нагрузку

Расчёт подшипника на заданный ресурс:

V-коэффициент вращения кольца. V=1 при вращении внутреннего кольца подшипника относительно направления радиальной нагрузки.

Эквивалентная динамическая нагрузка вычислена по формуле:

где  и  - коэффициенты,

- температурный коэффициент, так как

- коэффициент безопасности.(для всех видов редукторов)

.

Ресурс подшипников определяется по формуле:

где  - коэффициент надёжности при вероятности безотказной работы подшипника 90%,

- коэффициент, характеризующий совместное влияние на долговечность особых свойств металла деталей подшипника и условий его эксплуатации(для роликоподшипников конических при обычных условиях),

- частота вращения быстроходного вала,

- для роликовых  подшипников.

Заданный ресурс: .

Т.к. , то подшипник подходит.
б)Подшипник 7305А(на рисунке  10 т.В)

Расчёт на статическую грузоподъёмность:

Нахожу эквивалентную статическую нагрузку

Расчёт подшипника на заданный ресурс:

Эквивалентная динамическая нагрузка вычислена по формуле:

где  и  - коэффициенты,

       - температурный коэффициент, так как

       - коэффициент безопасности.(для всех видов редукторов)

Т.к. относительно направления радиальной нагрузки вращается внутреннее кольцо, то .

Ресурс подшипников определяется по формуле:

где  - коэффициент надёжности при вероятности безотказной работы подшипника 90%,

- коэффициент, характеризующий совместное влияние на долговечность особых свойств металла деталей подшипника и условий его эксплуатации(для роликоподшипников конических при обычных условиях),

- частота вращения быстроходного вала,

- для роликовых  подшипников.

Заданный ресурс: .

Т.к. , то подшипник подходит.

2.6 Расчет валов

2.6.2 Расчет на статическую прочность тихоходного вала

Вал D=40.

рис.16

Для изготовления вала выбрана сталь 45:

, , , ,

Нормальные напряжения определяются по формуле:

где  - суммарный изгибающий момент,

- осевая сила,

- момент сопротивления сечения вала при расчете на изгиб,

- площадь поперечного сечения.

Наиболее опасное сечение  I.

коэффициент перегрузки.

Для полого вала с одним шпоночным пазом шпоночного

.

Рассматриваю наиболее опасное сечение  1:

[1, стр166]

Осевая сила: .[1, стр165]

Касательные напряжения определяются по формуле:

[1, стр165]

где  - крутящий момент,

- момент сопротивления сечения вала при расчете на кручение.

Частные коэффициенты запаса прочности по нормальным напряжениям вычисляются:

по касательным напряжениям:

Общий коэффициент запаса прочности по пределу текучести:

Минимально допустимое значение коэффициента запаса: .

Т.к. , то статическая прочность обеспечена.

2.6.3 Расчет на сопротивление усталости выходного вала

Коэффициент запаса вычисляется по формуле:

Коэффициент запаса вычисляется через нормальные напряжения:

где  - предел выносливости вала,

- амплитуда нормальных напряжений цикла.

где  - предел выносливости,

- коэффициент снижения предела выносливости.

где  - эффективный коэффициент концентрации напряжений, так как шпоночный паз выполнен концевой фрезой

- коэффициент влияния абсолютных размеров поперечного сечения, расчёт на изгиб, d=40мм.

- коэффициенты влияния качества поверхности, обтачивание чистовое и .

- коэффициент влияния поверхностного упрочнения. Так как сталь без упрочнения.

где  - результирующий изгибающий момент.;

Тогда:

Аналогично нахожу коэффициент запаса по касательным напряжениям:

где  - предел выносливости,

- коэффициент снижения предела выносливости.

где  - эффективный коэффициент концентрации напряжений для шпоночного паза, так как,

- коэффициент влияния абсолютных размеров поперечного сечения при  расчёте на изгиб, d=80мм.

- коэффициенты влияния качества поверхности, обтачивание чистовое и .

- коэффициент влияния поверхностного упрочнения. Так как сталь без упрочнения.

где - крутящий момент.

Тогда:

Коэффициент запаса:

Минимально допустимое значение коэффициента запаса по сопротивлению усталости:

Т.к. , то вал выдержит нагрузку.

2.7 Выбор смазочного материала

Для уменьшения потерь мощности на трение и снижения интенсивности износа трущихся поверхностей, а также для предохранения их от заедания, задиров, коррозии и лучшего отвода теплоты трущиеся поверхности деталей должны иметь надежную смазку.

Для редуктора необходимо применять картерную систему смазывания. Масло заливается до середины червяка.

Контактные напряжения.

.

Окружная скорость колеса:

где  - угловая скорость колеса

- радиус делительной  окружности червяка

- частота вращения червяка.

Согласно этим данным выбрано масло: И-Т-Д-100.

И индустриальное,

Т тяжело нагруженные узлы,

Д масло с антиокислителями, антикоррозионными и противоизносными присадками.

Допустимые уровни погружения червяка в масляную ванну:

Уровень масла относительно дна корпуса редуктора выбран:

Объем масла вычислен по формуле:

где  - внутренняя длина корпуса,

- внутренняя ширина с  червяком(часть червяка)

-объём, занимаемый червяком.

Объем масла округлен в большую сторону:

.

2.8 Расчет цепной передачи

Для рекомендуется

Выбираем межосевое расстояние а=30t

Коэффициенты:

Выбираем цепь ПР-15,875-2300-1:

Смазывание: чистая внутришарнирная пропитка цепи через 120…180ч.

Число звеньев

Уточняем межосевое расстояние

Поскольку цепь должна провисать принимаем а=482.


 

А также другие работы, которые могут Вас заинтересовать

21857. Методы охраны объектов и сооружений в зоне влияния горных работ 335.5 KB
  Методы охраны объектов и сооружений в зоне влияния горных работ. Методы ведения горных работ при подработке сооружений. Конструктивные меры защиты подрабатываемых сооружений. Для защиты объектов и сооружений от вредного влияния подземных горных разработок и предотвращения прорывов воды в горные выработки применяют различные меры охраны которые условно можно разделить на четыре группы: профилактические горнотехнические конструктивные комплексные.
21858. Взаимосвязь геомеханических процессов в массивах пород с методами ведения горных работ и естественным геомеханическим состоянием массива 132.5 KB
  Взаимосвязь геомеханических процессов в массивах пород с методами ведения горных работ и естественным геомеханическим состоянием массива. Анализ современных подходов к вопросам проблемы Управление состоянием массива пород и перспективные направления её решения с целью повышения эффективности и безопасности подземных горных работ и сокращения вредных воздействий на окружающую среду. При этом освещаются основы этой науки науки о прочности устойчивости и деформируемости массивов горных пород горнотехнических объектов и сооружений в поле...
21859. Факторы, определяющие формы проявления геомеханических процессов 272.5 KB
  Состав строение и физические свойства горных пород. Структурные особенности массивов горных пород. Естественное напряженное состояние массивов пород. Основным предметом изучения в геомеханике является массив горных пород и механические процессы происходящие в нём.
21860. Управление геомеханическими процессами при проведении капитальных выработок и строительстве подземных сооружений 2.82 MB
  Управление геомеханическими процессами при проведении капитальных выработок и строительстве подземных сооружений. Задачи управления горным давлением и основные принципы обеспечения устойчивости горных выработок. Закономерности изменения напряженного состояния приконтурного массива выработок при их различных положениях в пространстве относительно поля напряжений в массиве пород и преобладающих структурных неоднородностях. Выбор и обоснование оптимальных форм и размеров поперечных сечений рациональной ориентации выработок.
21861. Особенности напряжённо-деформированного состояния массива пород вокруг очистных выработок 266 KB
  Особенности напряжённодеформированного состояния массива пород вокруг очистных выработок. Характерные виды проявлений горного давления в очистных выработках. Взаимное влияние очистных выработок при разработке обособленных и сближенных пластов и жил. Основные принципы выбора способа управления горным давлением при ведении очистных работ.
21862. Управление геомеханическими процессами при системах с естественным поддержанием выработанного пространства 848 KB
  В этой группе систем разработки поддержание очистного пространства осуществляется за счет естественной устойчивости обнажений массивов полезного ископаемого и вмещающих пород. Следует заметить что данная группа систем разработки применяется как правило в условиях устойчивых массивов пород. Очевидно в такой постановке вопроса устойчивое состояние любых элементов системы разработки определяется соотношением действующих в массиве пород напряжений и деформационнопрочностных свойств пород слагающих рассматриваемый элемент. Если конкретно...
21863. Управление геомеханическими процессами при системах с искусственным поддержанием выработанного пространства: с закладкой выработанного пространства 344 KB
  Для поддержания подрабатываемого массива горных пород выработанное пространство вслед за выемкой руды или через некоторое время заполняется закладочным материалом. Для повышения плотности создаваемого искусственного массива специально подбираются крупность кусков и фракционный состав смесей. Для достижения высокой плотности закладочного массива рекомендуется принимать максимальный размер куска не более 250 300 мм при этом содержание мелких частиц должна быть до 10 15 а фракция от О до 20 мм до 30. Усадка закладочного массива в первом...
21864. Организация процесса разработки управленческого решения 95.5 KB
  Демократизация разработки решений; 5.1 Логические схемы деятельности в процессе разработки решения Методы принятия решений направленных на достижение намеченных целей могут быть различными: 1 метод основанный на интуиции управляющего которая обусловлена наличием у него ранее накопленного опыта и суммы знаний в конкретной области деятельности что помогает выбрать и принять правильное решение; 2 метод основанный на понятии здравого смысла когда управляющий принимая решения обосновывает их последовательными...
21865. Целевая ориентация управленческих решений 126 KB
  Взаимосвязи в системе целей Фундаментальные цели определяют общую направленность деятельности организации являются исходным пунктом построения дерева целей организации. Эти цели не всегда ясны даже высшим менеджерам а тем более персоналу. Тактические цели: обеспечивают перевод стратегических целей в термины и показатели которые могут быть использованы при принятии решений; имеют своей основой стратегические цели направленные на их поддержку; более конкретны чем стратегические цели. Операционные цели являются еще более...