49903

Расчёт конденсатора паровой турбины

Курсовая

Производство и промышленные технологии

Расчет поверхностного конденсатора Тепловой расчет конденсатора Гидравлический расчет конденсатора Расположение трубок в конденсаторе

Русский

2014-01-12

840 KB

81 чел.

Санкт-Петербургский государственный политехнический университет

Кафедра турбинные двигатели и установки

КУРСОВОЙ ПРОЕКТ

Расчёт конденсатора паровой турбины

                          

                       

        

Преподаватель                                        Беркович А. Л.                        

Студент                                                   Юрасов Ю. А.

Группа                                                       4034/1       

Санкт-Петербург

2009

Содержание

[1]
Расчет поверхностного конденсатора

[1.1] 1.1. Тепловой расчет конденсатора

[1.2] 1.2. Гидравлический расчет конденсатора

[2] Расположение трубок в конденсаторе

[2.1] 2.1. Определение парового сопротивления конденсатора

[3] Механические расчеты конденсатора

[3.1] 3.1. Механический расчет трубок

[3.2] 3.2. Расчет на прочность корпуса конденсатора


Введение

Целью расчета конденсатора является: определение геометрических размеров, режимных характеристик, характеристик конденсатора на переменном режиме, гидравлический расчет, а также механические расчеты на прочность основных элементов конденсатора.

Исходные данные:

Кратность охлаждения ;

Температура воды на входе ;

Скорость воды в трубках ;

Расход пара ;

Начальное давление ;

Число ходов ;

Расход охлаждающей воды ;

Отношение диаметров трубок ;

Отношение .

Трубки крепятся к трубной доске за счет развальцовки.

  1.  
    Расчет поверхностного конденсатора

1.1. Тепловой расчет конденсатора

Положим, что патрубка равно 0, тогда можно записать . По таблицам насыщенного пара, по давлению  находим

Тогда температура конденсата , где - величина переохлаждения конденсата, равная 1 К.

По таблицам пара, при  и  находим .

Энтальпию на входе в конденсатор приблизительно можно считать равной

Температура воды на выходе из конденсатора:

Рис. 1. Схема конденсатора.

Рассчитаем давление в месте отсоса воздуха, предварительно задавшись паровым сопротивлением конденсатора

Определяем среднелогарифмическую разность температур:

Средняя температура охлаждающей воды:

Определим количество охлаждающей воды:

Теперь можно подсчитать количество тепла, полученное охлаждающей водой в конденсаторе в единицу времени: .

Коэффициент теплопередачи выбирается в зависимости от скорости движения в трубках и её средней температуры с учетом парового сопротивления:

Действительное же значение коэффициента теалопередачи определяется так: , где

- поправочный коэффициент, принимаем равным 0,83

- поправка на размер трубок, равная 0,96

Таким образом, получим:

Поверхность охлаждения конденсатора F представляет суммарную поверхность конденсаторных трубок, которая представляется так:

Число охлаждающих трубок в конденсаторе:

Длина трубок в конденсаторе в одном ходе: .

1.2. Гидравлический расчет конденсатора

При гидравлическом расчете конденсатора необходимо определить величину гидравлического сопротивления, оказываемого конденсатором потоку охлаждающей воды.

Полное гидравлическое сопротивление  складывается из:

а) гидравлического сопротивления конденсаторных трубок - ,

б) гидравлического сопротивления на входе и выходе из трубок - ,

в) гидравлического сопротивления в водяных камерах - .

, но , где плотность и вязкость охлаждающей воды можно определить по графику на рис. 2.


Рис. 2. Теплофизические свойства воды.

С учетом загрязнений  необходимо увеличить на 15%, таким образом, получим . Потери на входе воды в трубки и выходе из них можно оценить по формуле Бордо-Корно: , где скорость воды в водяной камере можно вычислить так: , а коэффициент  при развальцовке равен 1,0. Окончательно получим - . И, наконец, .

Гидравлическое сопротивление:

Теперь можно определить характеристику затрат на собственные нужды: .

  1.  Расположение трубок в конденсаторе

После того как диаметр трубок, их число, поверхность охлаждения конденсатора и число ходов определены можно перейти к разбивке трубок, а затем и к окончательному определению диаметра конденсатора.

При разбивке трубок конденсатора необходимо добиваться предотвращения образования застойных зон, а также одновременно выбирать путь движения пара как можно короче. Исходя из этого, выбираем расположение трубок по треугольнику, рис. 3.


Рис. 3. Разбивка трубок по треугольнику.

Угол  принимается равным 60°. Для поддержания необходимой скорости пара, поток целесообразно направлять по стрелке А. В этом случае расстояние между соседними трубками будет , где  при развальцовке , т.е.  и коэффициент загромождения составит: . В случае, если пар будет входить по стрелке В, то .

Диаметр трубной доски равен: , где - коэффициент заполнения трубной доски, равный 0,68. Тогда получим .

2.1. Определение парового сопротивления конденсатора

Паровое сопротивление конденсатора это разность давления между давлением пара на входе в конденсатор и давлением паровоздушной смеси в месте отсоса воздуха из конденсатора.

Но аналитический расчет величины  затруднителен, поэтому её  определяют из опытных данных

, где

- коэффициент, зависящий от характера разбивки трубок, принимаем равным 1,6;

- скорость пара потока между трубками первого ряда, равна ;

- удельный объем пара на входе в трубный пучок, находится по давлению . Т.е. .

.

  1.  Механические расчеты конденсатора

3.1. Механический расчет трубок

Конденсаторные трубки подвержены действию, как внутреннего давления, так и внешних сил. Внутреннее давление вызвано напором воды внутри трубок и вакуумом вне их. Оно определяется так:

, где - толщина стенки трубки, а принимаем равным 5 атмосферным давлениям.

Тогда

Внешние силы складываются из массы трубок, массы воды в них, конденсата на них и динамического напора паровоздушной струи. Эти силы приводят к возникновению напряжений изгиба. Напряжения изгиба можно найти следующим образом:

, где

суммарная нагрузка на трубку,

;

- момент сопротивления трубки,

;

- плотность материала трубки, принимаем равным .

Таким образом, окончательно получим:

Получившиеся напряжения не превышают .

Максимальный прогиб трубки можно определить как:

Для трубок прогиб не превышает .

Т.к. напряжения изгиба не превышают допускаемых, а прогиб меньше максимально допустимого, то трубки для данного конденсатора не нуждаются в промежуточных опорах.

Кроме этих расчетов необходимо трубки проверить на условия вибраций, т.е. проверить, Чтобы частота собственных колебаний трубок не совпала с частотой вращения турбины. Частоту собственных колебаний можно определить так:

, где

- модуль упругости;

- экваториальный момент инерции сечения трубки;

- удельная нагрузка одного погонного метра трубки с водой;

- коэффициент, принимаем равным 1.

;

.

Резонанса наблюдаться не будет, т.к. частота вращения турбины равна 50 Гц.

3.2. Расчет на прочность корпуса конденсатора

В рабочих условиях корпуса конденсатора подвергаются равномерному сжатию от разности атмосферного давления и вакуума в конденсаторе.

Толщину стенки цилиндрического корпуса, подверженного наружному давлению, можно определить:

, где

разность давления, можно принять равным 0,1 МПа;

диаметр корпуса, равен диаметру трубной доски;

допускаемые напряжения на сжатие, равные 90-120 МПа;

коэффициент, равный 10,0;

поправка на ржавление, 1мм.

Проверяем получившуюся толщину стенки на давление гидравлической пробы.

Напряжения предела текучести

Напряжения стенки не превышает , т.к. 143<150 МПа.

Теперь необходимо проверить стенку корпуса на изгиб с учетом ребер жесткости и без них. При наличии ребер напряжения определяются так:

, где

- толщина стенки без поправки;

площадь поперечного сечения ребра жесткости;

коэффициент Пуассона.

толщина ребра;

высота ребра.

Напряжения стенки без ребер:

, где

размер короткой стороны пластины, равный 0,1 м;

коэффициент, зависящий от положения длинной и короткой сторон пластины, равен 0,0833.

Как видно наличие ребер необходимо, чтобы снизить напряжения изгиба.

При расчете корпуса конденсатора на прочность, важное значение имеет проверка его на устойчивость. Рассчитаем критическое внешнее давление по следующим формулам.

, где к коэффициент, зависящий от способа крепления трубных досок, принимают равным 2,5.

Из двух выбираем меньшее, т.е. . Рабочее наружное давление должно быть ниже критического:

, где коэффициент безопасности, равный 5.

.


 

А также другие работы, которые могут Вас заинтересовать

82824. Организация работы на посту сезонного технического обслуживания автомобилей 22.28 KB
  Организация работ по техническому обслуживанию легковых автомобилей строится в зависимости от их принадлежности к государственному или индивидуальному сектору. Организация работ по техобслуживанию автомобилей может быть бригадной или агрегатно-участковой.
82825. Химия в экстремальных и экзотических условиях 60.5 KB
  Современная химия расширяя свои горизонты активно вторгается в области которые для классической химии не представляли интереса или были недостижимы. Лазерные ударные волны в химии средство исследования поведения вещества в экстремальных условиях....
82826. Университеты мира 136 KB
  В большинстве Университетов Великобритании высшее образование получают в течение 3-4 лет и все оценки за экзаменационные, научные и другие творческие работы выставляются по 100 балльной шкале. На каждом курсе, как правило, обязательными являются 4 предмета.
82827. Международные организации по стандартизации 72.97 KB
  В области международной стандартизации работают Международная организация по стандартизации ИСО Международная электротехническая комиссия МЭК и Международный союз электросвязи МСЭ. Ниже рассматривается деятельность ИСО и МЭК как наиболее крупных международных организаций по стандартизации...
82828. Індійська філософія 194.13 KB
  Аспект часу в історії філософської думки Індії завжди відігравав лише підпорядковану роль. Тому немає історії індійської філософії, а будь-яка історична періодизація розглядалася як умовність. Але філософія залишається невід’ємною частиною життя індійця - завжди сучасною і завжди життєво...
82829. Гироскопы и их применение 269.5 KB
  В данном случае он представляет собой тяжелое дискообразное тело, способное вращаться с малым трением вокруг закрепленного центра масс. Оправа состоит из двух колец: внутреннего и наружного. Ось вращения гироскопа проходит через его центр масс и закреплена в подшипниках, расположенных во внутреннем кольце.
82830. Взаимосвязь здоровья и работоспособности студентов 41.8 KB
  Цель работы - изучить взаимосвязь здоровья и работоспособности студентов. Уровень здоровья определяется способностью организма адаптироваться к ним. В результате каждая из популяций приобретает свою характерную структуру здоровья определяемую степенью её адаптации к условиям среды.
82831. Право и мораль 48 KB
  Мораль — принятые в обществе представления о хорошем и плохом, правильном и неправильном, добре и зле, а также совокупность норм поведения, вытекающих из этих представлении. Мораль регулирует взаимоотношения между людьми во всех сферах общественной жизни. Она имеет «вездесущий, всепроникающий характер».
82832. Парова машина 555.5 KB
  Першим механічним двигуном що знайшов практичне застосування була парова машина. Спочатку вона призначалася для використання в заводському виробництві але пізніше паровий двигун стали встановлювати на самохідних машинах паровозах пароплавах автомобілях і тракторах.