49920

Кинематическое исследование грейферного механизма

Курсовая

Производство и промышленные технологии

В левом верхнем углу чертежного листа в масштабе 10:1 вычерчена кинематическая схема грейферного механизма в 12-ти положениях. Для этого один полный оборот ведущего звена 1 разбит на 12 частей по , где за нулевое положение принята точка, совпадающая с осью Y. Направление вращения ведущего звена выбрали так, чтобы перемещение пленки зубом грейфера обеспечивалось сверху вниз.

Русский

2014-01-12

4.76 MB

12 чел.

траница | 9

Санкт-Петербургский Государственный

Университет Кино и Телевидения

Кафедра механики

Курсовой проект

Кинематическое

исследование грейферного механизма

 

Выполнил:

Студент 022 гр. ФМА

Чернышов В.В.

Проверил:

Сурков В.К.

                                               

Санкт-Петербург

2012

ИСХОДНЫЕ ДАННЫЕ

Для начала исследования грейферного механизма приведем исходные данные, взятые из таблицы № 2 – вариант 0:

Частота съемки

ν = 8 кадров в секунду

Шаг кадра HK

7,62 мм = 7,62  м

2,5 мм = 2,5   м

11,5 мм = 11,5   м

16,5 мм = 16,5   м

10 мм = 10   м

YD

-9 мм = -9  м

ЧАСТЬ I

1.1 ПОСТРОЕНИЕ ПЛАНОВ ПОЛОЖЕНИЙ МЕХАНИЗМА И ВЫБОР ПОЛОЖЕНИЯ ФИЛЬМОВОГО КАНАЛА

В левом верхнем углу чертежного листа в масштабе 10:1 вычерчена кинематическая схема грейферного механизма в 12-ти положениях. Для этого один полный оборот ведущего звена 1 разбит на 12 частей по , где за нулевое положение принята точка, совпадающая с осью Y. Направление вращения ведущего звена выбрали так, чтобы перемещение пленки зубом грейфера обеспечивалось сверху вниз. Порядок нумерации положений совпадает с направлением вращения звена 1.

Построив 12 положений грейферного механизма, строим траекторию движения конца зуба СК грейфера – точки К. Расположим фильмовой канал  ff так, чтобы в шаг кадра пленки H попадало 5 рабочих положений механизма. При этом углы входа и выхода зуба грейфера получились примерно равными 90.

После того, как мы выбрали конкретное положение фильмового канала, определяем значение масштабного коэффициента положения, учитывая заданный шаг кадра H = 7.62  м, по формуле:

/

Где Hs=53 мм ,  получаем  7.62 / 53 = 0,14 10-3 м/мм.

РАСЧИТЫВАЕМ:

2,5  10 = 25 мм

11,5  10 = 115 мм

(АС)

16,5  10 = 165 мм

10  10 = 100 мм

Затем, с учетом значения масштабного коэффициента,  определяем новые размеры звеньев грейферного механизма. Для дальнейших расчетов используются новые размеры механизма (формула =  A и т.д.)

3,5  м

16,1  м

LAC

23,1   м

LCK

14   м

1.2 СТРУКТУРНЫЙ АНАЛИЗ КИНЕМАТИЧЕСКОЙ СХЕМЫ ГРЕЙФЕРНОГО МЕХАНИЗМА

В рассматриваемом грейферном механизме число подвижных звеньев N=4, включая пленку - вращательные (,А, В) и поступательные (B,F) кинематические  пары, =1- высшая кинематическая пара М, где происходит касание зуба грейфера с межперфорационной перемычкой пленки.

По формуле Чебышева рассчитываем степень подвижности грейферного механизма:

W = 3 N - 2  -  = 3  4 - 2 5 - 1 = 1

Следовательно, механизм имеет одно ведущее звено.

Для проведения кинематического анализа механизма, производим замену высшей кинематической пары на звено, входящее в низшие кинематические пары.

Отсоединив ведущее звено 1, что описывается кинематической цепочкой:

СТ   -     -  1  -  I кл

Механизм разбивается на две группы Ассура:

А   -   2   -   В   -   3   -    B   - II кл

М   -   4   -   М   -   5   -   F   - II кл

Здесь в кружочек обведены вращательные кинематические пары, а в рамке – поступательные. Кинематический расчет ведется последовательно от ведущего звена в порядке наслоения групп Ассура.

I(1) => II(2,3) => II(4,5)

1.3 ПОСТРОЕНИЕ ПЛАНОВ СКОРОСТЕЙ

Угловая скорость вращения  ведущего звена 1 определяется заданной частотой съемки, в нашем случае ν = 8 кадра в секунду, по формуле:  = 2πν.

= 2πν = 2 3.14  8 = 50,24 рад/сек

а) Приведем кинематический анализ первой группы Ассура:

В качестве полюса выбираем точку А. Скорость полюса А направлена перпендикулярно к А в сторону вращения ведущего звена и равна:

=    = 50,24  3,5  = 0,176 м/с

Теперь скорость точки B можно найти путем графического решения векторного уравнения:

 =   +

Вектор  представляет скорость точки B во вращательном движении относительно точки А и направлен перпендикулярно к АС.

Вектор  направлен параллельно плоскости В.

Масштабный коэффициент плана скоростей выбираем таким образом, чтобы скорость точки А изображалась на чертеже отрезком () = 100 мм. Определяем по формуле:

 =    =  0,176/100 = 1,76*10-3 

Построение плана скоростей:

- Выбираем на чертеже точку  - полюс плана скоростей

- Строим из точки  отрезок  равный 100 мм, изображающий скорость  в масштабе

- Через точку «a» проводим линию перпендикулярно АС

- Через точку  проведем  линию параллельно плоскости В.

Точка их пересечения обозначена «b», а отрезки () и (ab) представляют собой изображение соответственно скоростей  и  в масштабе  и направленные к точке «b».

Определим значение скоростей для положения механизма 1:

=   () = 1,76 * 10-3  * 101   = 0,178 м/с

=   (ab) =  1,76*10-3   9 = 0,016 м/с

Теперь мы можем найти угловые скорости звеньев 2 и 3:

- для звена 2:    =    = 0,016/(16,1*10-3 )= 0,98  рад/сек

Далее определяем направления угловых скоростей звена 2  при помощи переноса вектора относительной скорости  и вектора  соответственно в точку «В».

Скорости других точек звена 2 на плане скоростей находятся методом подобия - на отрезке (ab) строится фигура (abck) подобная фигуре  ABCK механизма.

Размеры фигуры плана скоростей находятся из пропорций:      

=   ,  =     

Используя аналогичные пропорции,  найдем скорость точки, принадлежащей зубу грейфера - звену 2 и совпадающей с точкой , принадлежащей пленке – звену 5. Соединив на плане на скоростей  точку с   с , получим отрезок (), представляющее собой масштабное изображение скорости

б)Приведем кинематический анализ второй группы Ассура.

 

= 

Абсолютную скорость  точки  находим из векторного уравнения:

=  +

Скорость  уже определена, а относительная скорость  направлена  параллельно зубу грейфера СК, скорость  направлена параллельно  фильмовому  каналу  ff.

Для решения векторного уравнения данного выше, на плане скоростей из точки
проводим  линию , параллельную зубу грейфера  СК , из полюса
 фильмовому каналу ff. Точку пересечения обозначим , а вектор  () определяет  величину скорости пленки:                                              

                                = =   () = 1,76*10-3 71 = 0,125  м/с

Для положения механизма 1  определены все скорости, далее аналогичным способом  определяются скорости  для остальных 11 положений механизма, причем определение скорости движения пленки произведено  только для рабочих положений механизма перемещения пленки и моментов входа/выхода зуба грейфера из пленки.


Результаты кинематического расчёта для рабочих положений механизма перемещения пленки представлены в таблице 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 

()

(ab)

()

()

мм

мм

мм

мм

м/с

м/с

м/с

м/с

рад/с

1

101

9

100

71

0,178

0,016

0,176

0,125

0,98

2

77

48

70

112

0,136

0,084

0,123

0,197

5,25

3

23

92

13

108

0,040

0,162

0,023

0,190

10,06

4

43

110

69

83

0,076

0,194

0,121

0,146

12,02

5

103

103

130

54

0,181

0,181

0,228

0,095

11,3

6

122

59

-

-

0,215

0,104

-

-

6,46

7

100

0

-

-

0,176

0

-

-

0

8

51

61

-

-

0,090

0,107

-

-

6,65

9

4

102

-

-

0,007

0,180

-

-

11,18

10

46

111

-

-

0,081

0,195

-

-

12,11

11

77

92

-

-

0,136

0,162

-

-

10,06

12

96

52

-

-

0,169

0,092

-

-

5,71

1.4 ПОСТРОЕНИЕ ПЛАНОВ УСКОРЕНИЙ

Планы ускорений строятся для положений  рабочего такта грейферного механизма и моментов входа/выхода зуба грейфера из пленки.

Ускорение точки «А» при равномерном  вращении ведущего звена 1 определяется  формулой:

                                            WA= WАц   = , [м/с2],

где  - центростремительное ускорение  точки «А».

                                                WАц   = (50,24)2 * 3,5 *  = 8,834 м/с2.

В случае кривошипно-ползунного грейферного механизма справедливо будет применить векторное уравнение:

                                        B =  +  + .

В этом уравнении, используя результат построения плана скоростей, находим:

=   = (0,98)2 * 16,1 *  = 0,01546 м/

Найденное центростремительное ускорение направлено всегда по звену к соответствующему центру вращения  от точки «А» к точке «».

Ускорение WваЦ  параллельно ВА и направлено от точки В к точке А; ускорение Wвавр  перпендикулярно к ВА.

Для построения плана ускорений выбираем масштабный коэффициент плана ускорений:

=  = 8,834/100 = 0,08834  

Известные значения центростремительных ускорений откладываем на плане ускорений с учетом выбранного масштабного коэффициента. Отрезок Рwа соответствующий ускорению Wa  = 100 мм.

Величины остальных центростремительных ускорений на чертеже определяются в соответствии с масштабом:

() =  = 0,01546/0,08834  = 0,175 мм

Графическое построение векторного уравнения производим следующим образом:

Построение правой части:

- выбираем на чертеже точку

- откладываем отрезок  параллельно звену A, равный 100 мм

- из точки «А» откладываем отрезок  параллельно ВА от «В» к «А».

- из конца () проводим линию перпендикулярную звену ВА.

Построение левой части:

- из полюса  откладываем отрезок  параллельно плоскости В до пересечения с вектором , получаем точку В.

Определяем из плана ускорений вращательные ускорения:

=  () =  103*0,08834 = 9,099   

Далее находим угловые ускорения звеньев 2 и 3:

=  = 9,099/(16,1*10-3) = 565 рад/

Для определения ускорений других точек звена 2 пользуемся методом подобия – на отрезке (ab) строится фигура (abck). Принимая за относительное движение скольжение звена 4 по звену 2, за переносное – движение зуба грейфера 2 получаем векторное уравнение:

= =  +  +

Модуль ускорения Кориолиса определяется формулой:

= 2 = 2*0,98*0,176 = 0,344

Найденное значение  пересчитываем с учетом масштабного коэффициента:

() =  = 0,344/0,08834= 18,9 мм

Направление ускорения Кориолиса определяется поворотом относительной скорости  на 90 по направлению угловой скорости .

- направление ускорения  параллельно зубу СК

- направление ускорения  параллельно фильмовому каналу ff

Графическое построение векторного уравнения на плане ускорений производим следующим образом:

- из точки «» откладываем вектор

- из конца вектора  проводим линию действия вектора

- из полюса  проводим линию действия

- точка пересечения этих линий действия дает точку «», а соответствующие отрезки – есть изображение векторов  и :

=  =  () = 106*0,08834=9,364

Далее аналогично определяются ускорения всех остальных рабочих положений механизма перемещения пленки и момента выхода/входа зуба грейфера из пленки.

Результаты кинематического расчета для рабочих положений механизма перемещения пленки представлены в таблице 2:

()

мм

мм

мм

рад/

мм

1

0,01546

0,175

103

9,099

0,344

3,9

565

106

9,36

2

0,4437

5,32

91

7,58

1,293

14,64

470,8

16

1,41

3

1,628

18,43

57

5,03

0,46

5,207

312,42

54

4,77

4

2,327

26,34

14

1,24

2,92

33,054

77,02

40

3,53

5

2,041

24,5

42

3,71

5,152

58,32

230,4

38

3,4

По результатам расчета рабочих положений механизма перемещения пленки на чертеже


 

А также другие работы, которые могут Вас заинтересовать

35031. Защита баз данных на примере MS ACCESS 441.3 KB
  Для защиты БД Ассеss использует файл рабочих групп systеm.mdw (рабочая группа - это группа пользователей, которые совместно используют ресурсы сети), к которому БД на рабочих станциях подключаются по умолчанию. Файл рабочих групп содержит учётные записи пользователей и групп, а также пароли пользователей.
35032. CADElectro + Search 190.5 KB
  Архивное хранилище документов [2. Различные типы документов [2. Согласование и утверждение документов [2. Проведение изменений утвержденных документов [2.
35033. Системы автоматизированного проектирования ЕLECTRICS Light 1.0. 50 KB
  К существенным преимуществам системы заметно отличающим ее от программ аналогичного назначения следует отнести: прямой расчет освещенности с использованием кривых силы света светильников с отслеживанием затенений и отражений от поверхностей; возможность расчета освещенностей в помещениях произвольной конфигурации прямоугольной овальной Г или Tобразной и т.; получение сводного результата по расчету множества помещений и всего здания проекта; возможность детального анализа распределения освещенности по области расчета построение...
35034. WinELSO 232.5 KB
  Работа с программой Для модуля Схема Электрооборудование А Компонуем модель электроснабжения промышленного общественного или жилого сооружения из элементов базы данных Расчетная схема ИСТОЧНИКИ ПИТАНИЯ Генераторы ПРЕОБРАЗОВАТЕЛИ Силовые трансформаторы КОММУТАЦИОННАЯ АППАРАТУРА Автоматические выключатели Дифференциальные автоматические выключатели УЗО Предохранители Контакторы Пускатели Переключатели Разъединители ЭЛЕКТРОПРИЕМНИКИ Силовые Электроосветительная нагрузка Розетки бытовые Квартиры Дома одноквартирные Дома садовые Сооружения...
35035. ADEM как важное звено CALS-технологий 152 KB
  Обычно понимание главной цели происходит не сразу, а в результате кропотливой работы, которая может занимать годы. Даже если задача сформулирована правильно, то для её решения необходимы ресурсы и инструменты, которых может и не существовать на данный момент времени
35036. САПР ElectriCS и UG/Wiring Технологии разработки бортовых электрифицированных систем в авиационно-космической отрасли 282 KB
  Цепочка проектирования ElectriCS и UG Wiring Укрупненная блоксхема цепочки проектирования отображенная на рис. Рис. Порядок разработки принципиальной схемы Э3: внесение в проект электрических устройств из базы электрических устройств рис. 2; определение буквеннопозиционных обозначений электрических устройств; разработка принципиальной схемы с использованием редактора схем utoCD рис.
35037. SCS и SchematiCS 57 KB
  Реферат по презентации программ SCS и SchemtiCS Преподаватель: Сенько В. Использование SchemtiCS4 2. Использование SchemtiCS. Приложение SchemtiCS работает на платформе utoCD и применяется для автоматизации создания и оцифровки схем любой сложности.
35038. Программное обеспечение Solid Edge 67 KB
  Solid Edge — среднеуровневая трехмерная твердотельная CAD-система, предназначенная для проектирования моделей деталей, создания сборок с сохранением ассоциативных связей и выпуска чертежной документации на базе созданных моделей. Интегрирована с системой высокого уровня Unigraphics и системой управления проектом iMAN
35039. Проектирование распределительной сети собственных нужд на основе компьютерной модели с использованием программы ElectriCA 91 KB
  Проектирование низковольтной распределительной сети собственных нужд ТЭС связано со значительными трудозатратами что объясняется с одной стороны большой размерностью задачи а с другой – большим количеством разноплановых расчетов. По существующей технологии проектирования сети собственных нужд ТЭС весь комплекс проектных работ разбивается на следующие этапы: Анализ состава потребителей электрической энергии и их ориентировочное распределение по возможным источникам питания. Расчеты отклонений напряжения выполняются для наиболее критичных...