49920

Кинематическое исследование грейферного механизма

Курсовая

Производство и промышленные технологии

В левом верхнем углу чертежного листа в масштабе 10:1 вычерчена кинематическая схема грейферного механизма в 12-ти положениях. Для этого один полный оборот ведущего звена 1 разбит на 12 частей по , где за нулевое положение принята точка, совпадающая с осью Y. Направление вращения ведущего звена выбрали так, чтобы перемещение пленки зубом грейфера обеспечивалось сверху вниз.

Русский

2014-01-12

4.76 MB

16 чел.

траница | 9

Санкт-Петербургский Государственный

Университет Кино и Телевидения

Кафедра механики

Курсовой проект

Кинематическое

исследование грейферного механизма

 

Выполнил:

Студент 022 гр. ФМА

Чернышов В.В.

Проверил:

Сурков В.К.

                                               

Санкт-Петербург

2012

ИСХОДНЫЕ ДАННЫЕ

Для начала исследования грейферного механизма приведем исходные данные, взятые из таблицы № 2 – вариант 0:

Частота съемки

ν = 8 кадров в секунду

Шаг кадра HK

7,62 мм = 7,62  м

2,5 мм = 2,5   м

11,5 мм = 11,5   м

16,5 мм = 16,5   м

10 мм = 10   м

YD

-9 мм = -9  м

ЧАСТЬ I

1.1 ПОСТРОЕНИЕ ПЛАНОВ ПОЛОЖЕНИЙ МЕХАНИЗМА И ВЫБОР ПОЛОЖЕНИЯ ФИЛЬМОВОГО КАНАЛА

В левом верхнем углу чертежного листа в масштабе 10:1 вычерчена кинематическая схема грейферного механизма в 12-ти положениях. Для этого один полный оборот ведущего звена 1 разбит на 12 частей по , где за нулевое положение принята точка, совпадающая с осью Y. Направление вращения ведущего звена выбрали так, чтобы перемещение пленки зубом грейфера обеспечивалось сверху вниз. Порядок нумерации положений совпадает с направлением вращения звена 1.

Построив 12 положений грейферного механизма, строим траекторию движения конца зуба СК грейфера – точки К. Расположим фильмовой канал  ff так, чтобы в шаг кадра пленки H попадало 5 рабочих положений механизма. При этом углы входа и выхода зуба грейфера получились примерно равными 90.

После того, как мы выбрали конкретное положение фильмового канала, определяем значение масштабного коэффициента положения, учитывая заданный шаг кадра H = 7.62  м, по формуле:

/

Где Hs=53 мм ,  получаем  7.62 / 53 = 0,14 10-3 м/мм.

РАСЧИТЫВАЕМ:

2,5  10 = 25 мм

11,5  10 = 115 мм

(АС)

16,5  10 = 165 мм

10  10 = 100 мм

Затем, с учетом значения масштабного коэффициента,  определяем новые размеры звеньев грейферного механизма. Для дальнейших расчетов используются новые размеры механизма (формула =  A и т.д.)

3,5  м

16,1  м

LAC

23,1   м

LCK

14   м

1.2 СТРУКТУРНЫЙ АНАЛИЗ КИНЕМАТИЧЕСКОЙ СХЕМЫ ГРЕЙФЕРНОГО МЕХАНИЗМА

В рассматриваемом грейферном механизме число подвижных звеньев N=4, включая пленку - вращательные (,А, В) и поступательные (B,F) кинематические  пары, =1- высшая кинематическая пара М, где происходит касание зуба грейфера с межперфорационной перемычкой пленки.

По формуле Чебышева рассчитываем степень подвижности грейферного механизма:

W = 3 N - 2  -  = 3  4 - 2 5 - 1 = 1

Следовательно, механизм имеет одно ведущее звено.

Для проведения кинематического анализа механизма, производим замену высшей кинематической пары на звено, входящее в низшие кинематические пары.

Отсоединив ведущее звено 1, что описывается кинематической цепочкой:

СТ   -     -  1  -  I кл

Механизм разбивается на две группы Ассура:

А   -   2   -   В   -   3   -    B   - II кл

М   -   4   -   М   -   5   -   F   - II кл

Здесь в кружочек обведены вращательные кинематические пары, а в рамке – поступательные. Кинематический расчет ведется последовательно от ведущего звена в порядке наслоения групп Ассура.

I(1) => II(2,3) => II(4,5)

1.3 ПОСТРОЕНИЕ ПЛАНОВ СКОРОСТЕЙ

Угловая скорость вращения  ведущего звена 1 определяется заданной частотой съемки, в нашем случае ν = 8 кадра в секунду, по формуле:  = 2πν.

= 2πν = 2 3.14  8 = 50,24 рад/сек

а) Приведем кинематический анализ первой группы Ассура:

В качестве полюса выбираем точку А. Скорость полюса А направлена перпендикулярно к А в сторону вращения ведущего звена и равна:

=    = 50,24  3,5  = 0,176 м/с

Теперь скорость точки B можно найти путем графического решения векторного уравнения:

 =   +

Вектор  представляет скорость точки B во вращательном движении относительно точки А и направлен перпендикулярно к АС.

Вектор  направлен параллельно плоскости В.

Масштабный коэффициент плана скоростей выбираем таким образом, чтобы скорость точки А изображалась на чертеже отрезком () = 100 мм. Определяем по формуле:

 =    =  0,176/100 = 1,76*10-3 

Построение плана скоростей:

- Выбираем на чертеже точку  - полюс плана скоростей

- Строим из точки  отрезок  равный 100 мм, изображающий скорость  в масштабе

- Через точку «a» проводим линию перпендикулярно АС

- Через точку  проведем  линию параллельно плоскости В.

Точка их пересечения обозначена «b», а отрезки () и (ab) представляют собой изображение соответственно скоростей  и  в масштабе  и направленные к точке «b».

Определим значение скоростей для положения механизма 1:

=   () = 1,76 * 10-3  * 101   = 0,178 м/с

=   (ab) =  1,76*10-3   9 = 0,016 м/с

Теперь мы можем найти угловые скорости звеньев 2 и 3:

- для звена 2:    =    = 0,016/(16,1*10-3 )= 0,98  рад/сек

Далее определяем направления угловых скоростей звена 2  при помощи переноса вектора относительной скорости  и вектора  соответственно в точку «В».

Скорости других точек звена 2 на плане скоростей находятся методом подобия - на отрезке (ab) строится фигура (abck) подобная фигуре  ABCK механизма.

Размеры фигуры плана скоростей находятся из пропорций:      

=   ,  =     

Используя аналогичные пропорции,  найдем скорость точки, принадлежащей зубу грейфера - звену 2 и совпадающей с точкой , принадлежащей пленке – звену 5. Соединив на плане на скоростей  точку с   с , получим отрезок (), представляющее собой масштабное изображение скорости

б)Приведем кинематический анализ второй группы Ассура.

 

= 

Абсолютную скорость  точки  находим из векторного уравнения:

=  +

Скорость  уже определена, а относительная скорость  направлена  параллельно зубу грейфера СК, скорость  направлена параллельно  фильмовому  каналу  ff.

Для решения векторного уравнения данного выше, на плане скоростей из точки
проводим  линию , параллельную зубу грейфера  СК , из полюса
 фильмовому каналу ff. Точку пересечения обозначим , а вектор  () определяет  величину скорости пленки:                                              

                                = =   () = 1,76*10-3 71 = 0,125  м/с

Для положения механизма 1  определены все скорости, далее аналогичным способом  определяются скорости  для остальных 11 положений механизма, причем определение скорости движения пленки произведено  только для рабочих положений механизма перемещения пленки и моментов входа/выхода зуба грейфера из пленки.


Результаты кинематического расчёта для рабочих положений механизма перемещения пленки представлены в таблице 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 

()

(ab)

()

()

мм

мм

мм

мм

м/с

м/с

м/с

м/с

рад/с

1

101

9

100

71

0,178

0,016

0,176

0,125

0,98

2

77

48

70

112

0,136

0,084

0,123

0,197

5,25

3

23

92

13

108

0,040

0,162

0,023

0,190

10,06

4

43

110

69

83

0,076

0,194

0,121

0,146

12,02

5

103

103

130

54

0,181

0,181

0,228

0,095

11,3

6

122

59

-

-

0,215

0,104

-

-

6,46

7

100

0

-

-

0,176

0

-

-

0

8

51

61

-

-

0,090

0,107

-

-

6,65

9

4

102

-

-

0,007

0,180

-

-

11,18

10

46

111

-

-

0,081

0,195

-

-

12,11

11

77

92

-

-

0,136

0,162

-

-

10,06

12

96

52

-

-

0,169

0,092

-

-

5,71

1.4 ПОСТРОЕНИЕ ПЛАНОВ УСКОРЕНИЙ

Планы ускорений строятся для положений  рабочего такта грейферного механизма и моментов входа/выхода зуба грейфера из пленки.

Ускорение точки «А» при равномерном  вращении ведущего звена 1 определяется  формулой:

                                            WA= WАц   = , [м/с2],

где  - центростремительное ускорение  точки «А».

                                                WАц   = (50,24)2 * 3,5 *  = 8,834 м/с2.

В случае кривошипно-ползунного грейферного механизма справедливо будет применить векторное уравнение:

                                        B =  +  + .

В этом уравнении, используя результат построения плана скоростей, находим:

=   = (0,98)2 * 16,1 *  = 0,01546 м/

Найденное центростремительное ускорение направлено всегда по звену к соответствующему центру вращения  от точки «А» к точке «».

Ускорение WваЦ  параллельно ВА и направлено от точки В к точке А; ускорение Wвавр  перпендикулярно к ВА.

Для построения плана ускорений выбираем масштабный коэффициент плана ускорений:

=  = 8,834/100 = 0,08834  

Известные значения центростремительных ускорений откладываем на плане ускорений с учетом выбранного масштабного коэффициента. Отрезок Рwа соответствующий ускорению Wa  = 100 мм.

Величины остальных центростремительных ускорений на чертеже определяются в соответствии с масштабом:

() =  = 0,01546/0,08834  = 0,175 мм

Графическое построение векторного уравнения производим следующим образом:

Построение правой части:

- выбираем на чертеже точку

- откладываем отрезок  параллельно звену A, равный 100 мм

- из точки «А» откладываем отрезок  параллельно ВА от «В» к «А».

- из конца () проводим линию перпендикулярную звену ВА.

Построение левой части:

- из полюса  откладываем отрезок  параллельно плоскости В до пересечения с вектором , получаем точку В.

Определяем из плана ускорений вращательные ускорения:

=  () =  103*0,08834 = 9,099   

Далее находим угловые ускорения звеньев 2 и 3:

=  = 9,099/(16,1*10-3) = 565 рад/

Для определения ускорений других точек звена 2 пользуемся методом подобия – на отрезке (ab) строится фигура (abck). Принимая за относительное движение скольжение звена 4 по звену 2, за переносное – движение зуба грейфера 2 получаем векторное уравнение:

= =  +  +

Модуль ускорения Кориолиса определяется формулой:

= 2 = 2*0,98*0,176 = 0,344

Найденное значение  пересчитываем с учетом масштабного коэффициента:

() =  = 0,344/0,08834= 18,9 мм

Направление ускорения Кориолиса определяется поворотом относительной скорости  на 90 по направлению угловой скорости .

- направление ускорения  параллельно зубу СК

- направление ускорения  параллельно фильмовому каналу ff

Графическое построение векторного уравнения на плане ускорений производим следующим образом:

- из точки «» откладываем вектор

- из конца вектора  проводим линию действия вектора

- из полюса  проводим линию действия

- точка пересечения этих линий действия дает точку «», а соответствующие отрезки – есть изображение векторов  и :

=  =  () = 106*0,08834=9,364

Далее аналогично определяются ускорения всех остальных рабочих положений механизма перемещения пленки и момента выхода/входа зуба грейфера из пленки.

Результаты кинематического расчета для рабочих положений механизма перемещения пленки представлены в таблице 2:

()

мм

мм

мм

рад/

мм

1

0,01546

0,175

103

9,099

0,344

3,9

565

106

9,36

2

0,4437

5,32

91

7,58

1,293

14,64

470,8

16

1,41

3

1,628

18,43

57

5,03

0,46

5,207

312,42

54

4,77

4

2,327

26,34

14

1,24

2,92

33,054

77,02

40

3,53

5

2,041

24,5

42

3,71

5,152

58,32

230,4

38

3,4

По результатам расчета рабочих положений механизма перемещения пленки на чертеже


 

А также другие работы, которые могут Вас заинтересовать

34856. Матрицы (математика) 93 KB
  Для обработки наборов данных одного типа вводится понятие массива. Одномерные массивы Описание типа массива задается в разделе описаний TYPE следующим образом: имя типа =RRY [диапазон индексов] OF тип ; здесь имя типа правильный идентификатор; RRY OF зарезервированные слова массив из; диапазон индексов границы изменения индексов; тип любой тип ТурбоПаскаля. Здесь 12345 индексы элементов массива номера ячеек в которых они находятся; 5601029 элементы массива типа INTEGER. Тогда тип данного...
34857. Историческая справка 74 KB
  Среда программирования позволяет создавать тексты программ компилировать их находить ошибки и оперативно их исправлять компоновать программы из отдельных частей включая стандартные модули отлаживать и выполнять отлаженную программу. В них сгруппированы близкие по своему роду действия условное название которых находится в главном меню: File файл работа с файлами и выход из системы; Edit редактировать операции с буфером редактора текстов; Serch искать поиск текста процедуры функции места ошибки; Run выполнить ...
34858. Типы данных и их классификация. Вещественные типы данных 973 KB
  Под типом данных понимается множество допустимых значений этих данных а также совокупность операций над ними. Тип позволяет точно определить как следует интерпретировать те или иные данные. Чтобы этого избежать такой переменной при объявлении должен быть присвоен один из целочисленных типов. Иными словами принятая в Turbo Pscl типизация переменных позволяет исключить ошибочную интерпретацию данных и повышает надёжность программ.
34859. Алфавит и зарезервированные слова 47 KB
  Алфавит языка Turbo Pscl Для записи программы на языке ТР используется набор знаков включающий буквы цифры и специальные символы. Вот эти слова: ND GOTO PROGRM SM IF RECORD RRY IMPLEMENTTION...
34860. Закон попиту, вплив на попит цінових і неціновихфакторів 144.5 KB
  Закон попитувплив на попит цінових і неціновихфакторів Рішення які приймаються учасниками ринкових взаємовідносин каються насамперед у бажанні і можливості продавати і купувати товари іуги або ресурси. Розмір попиту кількість благ і послуг котрі споживачі готові й ь змогу купити по деякій ціні і протягом певного періоду часу. Якщо абстраіуватися від різних чинників що впливають на ціну іру і попит на цей товар то можна сказати що корінна властивість попиту ігає в наступному: зниження ціни веде до відповідного...
34861. Закон пропозиціі, вплив на пропозмціію цінових і не цінових факторів 165 KB
  Закон пропозиціі вплив на пропозмціію цінових і не цінових факторів Розмір пропозиції це різні кількості товарів і послуг що виробник N здатний виробити і запропонувати до продажу на ринку по кожній гній ціні з ряду можливих цін протягом визначеного періоду часу. Якщо всі інші чинники будуть незмінними то виникає прямий між ціною і кількістю запропонованого продукту тобто з підвищенням ювідно зростає і розмір пропозиції; із зниженням цін скорочується ■ р...
34862. Взаємодія попиту і пропозиціі 177.5 KB
  Ціна в 3 у. за тонну кукурудзи називається ціною ринкої клірингу або ціною рівноваги коли розмір пропозиції і розмір по і врівноважуються тобто ціна в 3 у. виступає як єдина стійка ціна кукуру. Ціна рівноваги характеризує той рівень ціни при якому ріши виробників про продаж і рішення споживачів про покупку взаі узгоджуються.
34863. Конкуренція. Типи конкурентноі поведінки 22 KB
  Конкуренція. Є два види конкуренціі : аДосконала чиста бНедорсконала Досконала чиста конкуренція характеризується існуваню великої кількості продавців що оперують на ринку однорідними стандартнго продуктами. Недосконала конкуренція протилежність чистої конкурени означає той чи інший ступінь впливу виробника на ринок товарів та послуг. Монополістична конкуренція...
34864. Методи конкурентноі боротьби. Типи ринків 24.5 KB
  Це ідеальна модель застосування якоі дозволяє реальні еномічні відносини:1дуже багато малих ідприємців фле мало великих 2нема барєрів входження в пеіну галузь 3товар має бути повністю однаковий з продозиціі покупця 4усі учасники себе раціонально Недосконала конкуренція :це такий стан ринку за якоі продавці можуть здійснювати вплив на ринкову ціну така ситуапція означає існування монополії. Монополія покупців може існувати на...