49937

Определение моментов инерции твёрдых тел и проверка теоремы Гюгенса-Штейнера

Лабораторная работа

Физика

Для любой плоской фигуры сумма моментов инерции относительно двух взаимноперпендикулярных осей, лежащих в плоскости пластинки, равна моменту инерции относительно оси, перпендикулярной плоскости пластинки и проходящей через точку пересечения осей в плоскости пластинки.

Русский

2014-01-12

242.5 KB

0 чел.

Цель работы: Определение моментов инерции твёрдых тел и проверка теоремы Гюгенса-Штейнера.

Приборы и принадлежности: крутильный маятник, набор тел.

Ход работы:

I.) Определение моментов инерции длинного стержня:

1.)  10 –  11,464 с

      10 – 11,459 с

      10 – 11,471 с

Период колебания рамки без закреплённых в ней тел:        с

2.) 10 – 14,356 с

    10 – 14,358 с

    10 – 14,352 с

  с

    10 – 14,359 с

    10 – 14,353 с

    10 – 14,356 с

  с

    10 – 14,375 с

    10 – 14,376 с

    10 – 14,380 с

  с

Период колебания рамки с закреплённым  ней эталонным кубом.

с

3.) Момент инерции эталонного куба:

м – сторона эт. куба

кг – масса эт. куба

кг

4.) Закрепим в рамке стержень.

    10 – 20,165 с

    10 – 20,174 с

    10 – 20,162 с

    с

    При изменении ориентации стержня:

    10 – 20,177 с

    10 – 20,166 с

    10 – 20,158 с

    с

    Период Т практически не зависит от угла между плоскостью рамки и стержня.

5.)      ;

Момент инерции стержня:

     0,0014737

6.) , где

L = 0,24 м – длина стержня

= 0,3 кг – масса стержня

= кг

D = 0,014 м

Причины, по которым указанная разность может выходить за пределы погрешностей экспериментального определения :

- индивидуальные особенности экспериментатора;

- несовершенство установки, средств измерения.

7.) Если стержень считать пренебрежительно тонким, то теоретическое выражение для момента инерции стержня для той же оси имеет вид:

Значение лучше согласовывается с экспериментальным значением =0,0014737

II) Проверка теоремы Гюгенса-Штейнера:

1.)

 D' = 0,039 м

 h'          h' = 0,019 м

 

  d              D'

                               

2.) = 4,5 см

с

- момент инерции.

Момент инерции одного тела:

;

Для расчёта упростим формулу:

Расчитаем :

3.)

6 см

с

см

с

см

с

см

с

4.) Определим моменты инерции каждого из тел:

с

с

кг

м

=

=

- экспериментальное значение момента инерции одного исследуемого тела в случае, когда ось проходит через центр масс (т.е. для d=0).

5.) В силу предположений

Выполняется теорема Гюгенса-Штейнера:

, где

- момент инерции тела относительно оси колебаний

- момент инерции тела относительно оси проходящей через центр масс и параллельно оси колебаний

m – масса тела

d – расстояние между указанными осями

Изобразим координатную плоскость. По оси абсцисс откладываются значения переменной x=, по оси ординат y=. Нанесённые точки должны лежать на прямой  . Однако, они лежат на прямой не совсем точно.

x,

2,025

3,6

5,625

8,1

11,025

y,

5,703

8,721

12,262

16,755

6.) С помощью МНК находим наилучшую прямую, соответствующую экспериментальным точкам. Параметры этой прямой, входящие в формулу , вычисляются по формулам:

где

где n – общее число значений, n=6.

м

Вычислим

n – число степеней свободы:

n = 6-3 = 3.

По таблице определяем доверительную вероятность: P=100%

От сюда следует, что закон Гюгенса-Штейнера полностью соблюдается.

III) Проверка согласованности экспериментальных значений и.

Вычислим момент инерции длинного тонкого однородного стержня относительно оси, проходящей через центр масс стержня и ему перпендикулярной.

m – масса стержня

- длинна стержня

- линейная плотность стержня

Рассмотрим элемент стержня dx, находящийся на расстоянии x от оси, проходящей через центр масс.

Масса элемента:

Момент инерции элемента:

Для любой плоской фигуры сумма моментов инерции относительно двух взаимноперпендикулярных осей, лежащих в плоскости пластинки, равна моменту инерции относительно оси, перпендикулярной  плоскости пластинки и проходящей через точку пересечения осей в плоскости пластинки.

Вывод: В ходе выполнения данной лабораторной работы, определили моменты инерции твёрдых тел и проверили теорему Гюгенса-Штейнера.


 

А также другие работы, которые могут Вас заинтересовать

22473. ИНТЕРФЕЙСЫ, ТЕРМИНАЛЬНОЕ ОБОРУДОВАНИЕ, СТРУКТУРА TDMA КАДРОВ И ФОРМИРОВАНИЕ СИГНАЛОВ В СТАНДАРТЕ GSM 381.44 KB
  Цель работы Изучить интерфейсы структуру служб терминальное оборудование структуру TDMA кадров и формирование сигналов в стандарте GSM. Ознакомиться с внутренними интерфейсами используемыми для соединения между различным оборудованием сетей GSM. Ознакомиться со структурой служб и передачей данных в стандарте GSM.
22474. ОБОРУДОВАНИЕ ПОДВИЖНЫХ И БАЗОВЫХ СТАНЦИЙ, ЦЕНТРА КОММУТАЦИИ 124.5 KB
  Цель работы Изучить блоксхемы подвижной станции абонентского радиотелефонного аппарата базовой станции и центра коммутации. Задание Изучить блоксхему подвижной станции ПС. Изучить блоксхему базовой станции БС. Краткая теория вопроса Рассмотрение элементов системы сотовой связи начнем с подвижной станции наиболее простого по функциональному назначению устройства и к тому же единственного элемента системы который не только реально доступен пользователю но и находится у него в руках в буквальном смысле этого слово.
22475. ПРИНЦИПЫ ПОСТРОЕНИЯ И ТИПЫ ТРАНКИНГОВЫХ СИСТЕМ 1.62 MB
  Изучить основные типы транкинговых систем: Система ВОЛЕМОТ; Система АЛТАЙ; Системы стандарта SMARTRUNK; Системы стандарта МРТ 1327; Система IDEN; Система стандарта TETRA. Однако продолжают успешно развиваться сравнительно простые системы радиосвязи имеющие специальное ограниченное применение. Профессиональные системы подвижной радиосвязи создавались и развертывались в России в интересах обеспечения служебной деятельности различных государственных структур министерства обороны правоохранительных органов промышленных групп и...
22476. КЛАССИФИКАЦИЯ СИСТЕМ ПЕРСОНАЛЬНОГО РАДИОВЫЗОВА, ПЕЙДЖЕРЫ, РЕПИТЕРЫ, ОСНОВНЫЕ ПРОТОКОЛЫ ПЕРЕДАЧИ ИНФОРМАЦИИ. 1.21 MB
  КЛАССИФИКАЦИЯ СИСТЕМ ПЕРСОНАЛЬНОГО РАДИОВЫЗОВА ПЕЙДЖЕРЫ РЕПИТЕРЫ ОСНОВНЫЕ ПРОТОКОЛЫ ПЕРЕДАЧИ ИНФОРМАЦИИ. Цель работы Изучить классификацию систем персонального радиовызова пейджеры репитеры основные протоколы передачи информации. Ознакомиться с основными протоколами передачи информации в СПРВ. При этом для передачи вызова абоненту использовалось последовательное тональное кодирование адреса обеспечивающее возможность обслуживания до нескольких десятков тысяч пользователей.
22477. ИЗУЧЕНИЕ МЕТОДОВ КОДИРОВАНИЯ РЕЧЕВЫХ СИГНАЛОВ В СТАНДАРТЕ ТЕТRА ТРАНКИНГОВЫХ СЕТЕЙ 961.5 KB
  Задание Ознакомиться с общим описанием алгоритма кодирования речевого сигнала. Изучить особенности канального кодирования для различных логических каналов. Oбщее описание алгоритма кодирования речевого сигнала СЕLР Для кодирования информационного уплотнения речевых сигналов в стандарте ТЕТRА используется кодер с линейным предсказанием и многоимпульсным возбуждением от кода СЕLР Соdе Ехсited Linear Ргеdiction.
22478. СИСТЕМА СОТОВОЙ СВЯЗИ СТАНДАРТА GSM-900 109.5 KB
  Цель работы Изучить основные технические характеристики функциональное построение и интерфейсы принятые в цифровой сотовой системе подвижной радиосвязи стандарта GSM. Задание Ознакомиться с общими характеристиками стандарта GSM. Краткая теория Стандарт GSM Global System for Mobile communications тесно связан со всеми современными стандартами цифровых сетей в первую очередь с ISDN и IN Intelligent Network.