49952

Расчет ветровой нагрузки

Лабораторная работа

Физика

Эпюра средней скорости ветра и ветровая нагрузка Расчет волновой нагрузки на опорные колонны СПБУ при регулярном волнении Волновая нагрузка преграды с малыми относительно длины волны l размерами поперечного сечения может быть представлена как сумма скоростной Qск и инерционной Qин составляющих: Q = Qин Qск Однако учитывая что вопервых скоростная составляющая Qск при воздействии на форменные решетчатые конструкции является преобладающей т. Qск Qин и вовторых инерционная составляющая Qин во времени действует асинхронно по отношению к...

Русский

2014-01-13

75 KB

11 чел.

Расчет ветровой нагрузки

На раннем этапе проектирования СПБУ воздействие ветра можно считать чисто статическим, т.е допустить, что частицы воздуха распространяются с постоянной во времени средней скоростью , где z высота над уровнем моря. Экспериментально установлено, что средняя скорость ветра увеличивается с высотой z и это изменение рассчитывается по формуле

,

где: W10 - средняя скорость ветра на уровне z = 10 м.

На рис.1 показана схема ветрового воздействия на надводную часть СПБУ: неравномерная по высоте эпюра средней скорости ветра ; и сосредоточенная на высоте zп статическая ветровая нагрузка , которая может быть определена по формуле

кН,

где rвозд = 0.00125 т/м3 - плотность воздуха;

 CW =1,16 - обобщенный коэффициент аэродинамического сопротивления СПБУ;

Sп =1670 м  - площадь парусности.

Рис. 1. Эпюра средней скорости ветра и ветровая нагрузка

Расчет волновой нагрузки на опорные колонны СПБУ при регулярном волнении

Волновая нагрузка преграды с малыми относительно длины волны l размерами поперечного сечения может быть представлена как сумма скоростной Qск и инерционной Qин составляющих:

Q = Qин + Qск

Однако учитывая, что, во-первых, скоростная составляющая Qск при воздействии на форменные решетчатые конструкции является преобладающей (т.е. Qск>>Qин) и, во-вторых, инерционная составляющая Qин во времени действует асинхронно по отношению к скоростной составляющей Qск (т.е. qск ~coswt, а Qин ~ sinwt, где w - круговая частота регулярного волнения), примем, что Qин пренебрежимо мала и ограничимся рассмотрением лишь скоростной составляющей волновой нагрузки Q = Qск.

Величину Qск определим приближенно, используя теорию волн малой амплитуды, согласно которой ордината профиля взволнованной поверхности моря по лучу распространения х определяется формулой

где  h - высота волны;

k - волновое число, равное для случая глубоководья (т.е. при Н > l/2).

Если t - период регулярного волнения, тогда круговая частота волнения w и волновое число соответственно равны:

w = 2p/ t = 2·3,14/10,8 = 0,581 с-1;    k = w2 / g = 0,5812 / 9,81 = 0,034 м-1.

Волновое число k показывает, сколько волн может быть расположено на отрезке длиной 2p метров. Оно связано с длиной волны соотношением

l = 2p / k = 23,14/0,034 = 184,706 м.

Горизонтальная составляющая скорости орбитального движения частиц жидкости на уровне z = 0 в соответствии с теорией волн малой амплитуды определяется зависимостью

Затухание скорости по глубине для условий глубокой воды может быть найдено как

где z -  координата глубины, отсчитываемая от уровня спокойной поверхности моря вниз.

С учетом этих обозначений удельную (т.е. на 1 погонный метр длины) скоростную составляющую волновой нагрузки можно записать с использованием формулы Дж. Морисона:

qск = 0.5Cскr|V|Vb.

где Cск - обобщенный коэффициент сопротивления опорной колонны для скоростной составляющей (Cск = 1,43);

r = 1.025 т/м3 - плотность морской воды;

b - характерный размер опорной колонны (в нашем случае b=2 а=5.2 м).

Волновую нагрузку на 2 опоры первого ряда (х = 0) можно записать как

или, вынося постоянные за знак интеграла, получим

,

где h1 - уровень взволнованной поверхности воды у первого ряда опор.

Определенный интеграл найдем из условия е-2kH  0, что соответствует полному затуханию скоростной нагрузки на уровне дна моря и h1 = h/2.

 

            Глубина точки приложения равнодействующей нагрузки Q1 может быть найдена из отношения интегралов

            При условии h1 = h/2 и е-2kH  0 имеем

zq1 = (l-2k h1)/2k = (l-kh)/2k = (1-0,03410,8)/20,034= 9,306 м.

           

            Уровень взволнованной поверхности воды у второго ряда опор

                    h2 = 0.5h·cos(kL1) = 0.5·10,8·cos(0,034·37,8) = 1,52 м.

 Следует обратить внимание на то, что при расчете надо аргумент (kL1) брать в радианах. Аналогично для нагрузки на второй ряд опор получим

 м

 

Таким образом, суммарная волновая нагрузка на оба ряда опорных колонн СПБУ

                         Qв = Q1 + Q2 =  1588,879 + 96,868 = 1685,747 кН.


 

А также другие работы, которые могут Вас заинтересовать

17755. Действительная подача шестерённого насоса 1.66 MB
  Лекция 11. Объёмные насосы продолжение 10.3. Действительная подача шестерённого насоса. Действительная подача шестерённого насоса меньше теоретической на величину объёмных потерь . Объёмные потери определяются внутренними утечками в насосе и потерями связанны
17756. Регулирование производительности насосов 331 KB
  Лекция №12. Регулирование производительности насосов. При регулировании производительности насосов используют разные способы соединения насосов между собой и разные способы изменения параметров характеристик как насосов так и систем на которые они работают. Все эти ...
17757. Поршневые пусковые компрессоры 4.37 MB
  Лекция №13. Поршневые пусковые компрессоры. 13.1. Устройство и работа поршневых пусковых компрессоров. На рис. 13.1 представлена принципиальная схема одноступенчатого поршневого компрессора. Поршень движется в цилиндре возвратнопоступательно от верхней мёртвой точки ВМ...
17758. Расчёт многоступенчатого поршневого компрессора 730 KB
  Лекция №14. Расчёт многоступенчатого поршневого компрессора. 14.1 Коэффициент подачи компрессора. Все коэффициенты снижения производительности названные в предыдущей лекции могут быть вычислены на основании зависимостей установленных достаточно простым способом...
17759. Проектирование многоступенчатого поршневого компрессора 375.5 KB
  Лекция №16. Проектирование многоступенчатого поршневого компрессора. 16.1 Выбор числа ступеней. При выборе числа ступеней можно находить минимально возможное число ступеней zmin и оптимальное число ступеней zopt. Минимальное число ступеней устанавливается из условия вз...
17760. Дослідження забруднення повітряного середовища робочої зони 260.5 KB
  Лабораторна робота №9 Дослідження забруднення повітряного середовища робочої зони Вступ Лабораторна робота з дослідження забруднення повітряного середовища робочої зони комплексна. До її складу включені: 1. Лабораторна робота з дослідження запиленості по
17761. ПОЖЕЖНА БЕЗПЕКА. ТЕОРЕТИЧНІ ОСНОВИ ПРОЦЕСІВ ГОРІННЯ ТА ВИБУХУ. 428 KB
  ЛАБОРАТОРНА РОБОТА № 15 ПОЖЕЖНА БЕЗПЕКА Мета роботи допомогти студентам вивчити види пожежної техніки для захисту об'єктів та принципи їх вибору категорії виробництв за вибухопожежонебезпекою та знаки пожежної безпеки. ПОЖЕЖА це неконтрольоване горіння п...
17762. Исследование освещения 243 KB
  Лабораторная работа №1. Исследование освещения. Цель работы: ознакомиться с видами освещения и с нормами проектирования естественного и искусственного освещения; исследовать нормируемые показатели характеризующие освещение в условиях лаборатории; изучить и ис
17763. Исследование параметров производственного шума и определение эффективности звукоизоляции 262.5 KB
  Лабораторная работа №12. Исследование параметров производственного шума и определение эффективности звукоизоляции. Цель работы: изучить методику измерения и оценки основных параметров производственного шума; исследовать звукоизоляционные свойства различных ...