49962

ПОСТОЯННОМ ДАВЛЕНИИ И ОБЪЕМЕ

Лабораторная работа

Физика

Изучение процессов в идеальных газах определение отношения теплоемкостей Оборудование.3 Увеличение внутренней энергии идеального газа в случае изменения его температуры на здесь i число степеней свободы молекулы под которым подразумевается число независимых координат определяющих положение молекулы в пространстве: i =3 для одноатомной; i =5 для двухатомной; i =6 для трех и многоатомной; R универсальная газовая постоянная ; R= 831 Дж мольК. При расширении газа система выполняет работу 5.4 молярная...

Русский

2014-01-13

291.5 KB

9 чел.

Лабораторная работа №5.

ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЕМКОСТЕЙ ВОЗДУХА ПРИ

ПОСТОЯННОМ ДАВЛЕНИИ И ОБЪЕМЕ.

02

Цель работы.

Изучение процессов в идеальных газах, определение отношения теплоемкостей        

Оборудование.

Для определения теплоемкостей воздуха   предназначена экспериментальная установка ФПТ 1-б, общий вид которой показан на рисунке (5.2)

Рисунок (5.2) Общий вид экспериментальной установки ФПТ 1-б:

1-стойка; 2-блок манометра; 3-блок рабочего элемента; 4-блок приборов; 5-пневмотумблер «Атмосфера»

Установка состоит из стеклянной колбы, соединенной с открытым водяным манометром 2. Воздух нагнетается в колбу микрокомпрессором, размещенным в блоке рабочего элемента 3. Микрокомпрессор включается тумблером «Воздух», установленным на передней панели блока приборов 4. Пневмотумблер «Атмосфера» 5, расположенный на панели блока рабочего элемента в положении «открыто» позволяет соединить колбу с атмосферой.

Теория метода

Удельной теплоемкостью вещества называется величина, равная количеству теплоты, которую необходимо сообщить единице массы вещества для увеличения ее температуры на один Кельвин:  (5.1)

Теплоемкость одного моля вещества называется молярной теплоемкостью:

(5.2)

где m - масса;  µ - молярная масса вещества.

Значение теплоемкости газов зависит от условий их нагревания. Согласно с первым законом термодинамики количество теплоты δQ, сообщенное системе, расходуется на увеличение внутренней энергии dU и на выполнение системой работы δА против внешних сил:

(5.3)

Увеличение внутренней энергии идеального газа в случае изменения его температуры на   

здесь i - число степеней свободы молекулы, под которым подразумевается число независимых координат, определяющих положение молекулы в пространстве: i =3 - для одноатомной; i =5 - для двухатомной; i =6 - для трех- и многоатомной; R -универсальная газовая постоянная ; R= 8,31 Дж/ (моль-К).

При расширении газа система выполняет работу

(5.5)

Если газ нагревать при постоянном объеме V= const, то δА=0 и согласно с(5.3) все полученное газом количество теплоты расходуется только на увеличение его внутренней энергии и, учитывая (6.4), молярная теплоемкость идеального газа при постоянном объеме

   (5.6)

Если газ нагревать при постоянном давлении P = const, то полученное газом количество теплоты расходуется на увеличение внутренней энергии dU и выполнение работы δА:

Тогда молярная теплоемкость идеального газа при постоянном давлении         (5.7)

Используя  уравнение  состояния  идеального  газа  (уравнение  Клапейрона-Менделеева)                

можно доказать, что для моля газа

и поэтому

(5.8)

Отношение теплоемкостей:

(5.9)

Адиабатным называется процесс, протекающий без теплообмена с окружающей средой, На практике он может быть осуществлен в системе, окруженной теплоизоляционной оболочкой, но поскольку для теплообмена необходимо некоторое время, то адиабатным можно считать также процесс, который протекает так быстро, что система не успевает вступить в теплообмен с окружающей средой. Первый закон термодинамики с учетом (5.6)    для адиабатного процесса имеет вид

(5.10)

Продифференцировав уравнение Клапейрона-Менделеева

и подставляя в формулу(5.10), получим

Учитывая соотношение между молярными теплоемкостями идеального газа при постоянном давлении и объеме, которое описывается формулой Майера (5.8), а также (5.9), получим

Решение написанного дифференциального уравнения имеет вид

(5.11)

Уравнение (5.11) называется уравнением адиабаты (уравнением Пуассона), а введенная в (5.9) величина показателем адиабаты.

Метод определения показателя адиабаты, предложенный Клеманом и Дезормом (1819г), основывается на изучении параметров некоторой массы газа, переходящей из одного состояния в другое двумя последовательными процессами - адиабатным и изохорным. Эти процессы на диаграмме Р - V (рис.5.1) изображены кривыми соответственно 1-2 и 2-3. Если в баллон, соединенный с открытым водяным манометром, накачать воздух и подождать до установления теплового равновесия с окружающей средой, то в этом начальном состоянии 1 газ имеет параметрыпричем температура газа в баллоне равна температуре окружающей среды , а давление  немного больше атмосферного.

Если теперь на короткое время соединить баллон с атмосферой, то произойдет адиабатное расширение воздуха. При этом воздух в баллоне перейдет в состояние 2,его давление понизится до атмосферного . Масса воздуха, оставшегося в баллоне, которая в состоянии 1 занимала часть объема баллона, расширяясь, займет весь объем . При этом температура воздуха, оставшегося в баллоне, понизится до . Поскольку процесс 1 - 2 - адиабатный, к нему можно применить уравнение Пуассона (5.11)или

Отсюда  

(5.12)

После кратковременного соединения баллона с атмосферой охлажденный из-за адиабатного расширения воздух в баллоне будет нагреваться (процесс 2 - 3) до температуры окружающей среды   при постоянном объеме  . При этом давление в баллоне поднимется до . Поскольку процесс 2-3 - изохорный, к нему можно применить закон Шарля:

,отсюда (5.13)

Из уравнений (5.12) и (5.13) получим:

 

Прологарифмируем:

Поскольку избыточное давление и очень малы по сравнению с атмосферным давлением  и учитывая что при Х<<1 , будем  иметь:

Откуда              (5.14)

Избыточные давления     и    измеряют с помощью U-образного манометра по разности уровней жидкости с плотностью :

(5.15)

Из (5.14) и (5.15) получим расчетную формулу для определения γ:

(5.16)

Порядок выполнения работы:

1.Включить установку тумблером "Сеть"

2.Установить пневмотумблер "Атмосфера" в положение "Закрыто".Для подачи воздуха в колбу включить тумблер "Воздух".

3.С помощью манометра контролируют давление в колбе. Когда разность уровней воды в манометре достигнет 150...250 мм вод.ст., отключить подачу воздуха.

4.Подождать 2...3 мин., пока температура воздуха в колбе сравняется с
температурой окружающего воздуха То, в колбе при этом установится
постоянное давление    . Определить разность уровней Н, установившуюся в коленах манометра, и полученное значение занести в таблицу (5.1)

Номер измерения

, мм.вод.ст

, мм.вод.ст.

5. На короткое время соединить колбу с атмосферой, установив пневмотумблер «Атмосфера» в положение «Открыто».

6. Через 2…3 мин., когда в колбе установится постоянное давление .

Определить разность уровней h , установившуюся в коленах манометра, и полученное значение занести в таблицу (5.1)

7. Повторить измерения по пп.2-6 не менее 10 раз при различных значениях величины H

8. Выключить установку  тумблером «Сеть».

Обработка результатов измерения

  1.  Для каждого измерения определить по формуле (5.16) отношение теплоемкостей . Найти среднее <>.
  2.  Оценить погрешность результатов измерения.

Контрольные вопросы

  1.  Что такое изопроцессы и каким законам они подчиняются? Нарисуйте графики этих процессов.
  2.  Сформулируйте I закон термодинамики. Запишите этот закон для изобарного, изохорного, изотермического и адиабатного процессов.
  3.  Дайте определение удельной и молярной теплоемкости. В каких единицах СИ они измеряются?
  4.  В чем особенности теплоемкости газа? Выведите формулу для молярных теплоемкостей     и     идеального газа.
  5.  Дайте определение числа степеней свободы молекулы. Чему равна величина    для 1-, 2-, 3- и многоатомного идеальных газов?
  6.  Какой процесс называется адиабатным? Выведите уравнение Пуассона.
  7.  Рассчитайте теоретическое значение показателя адиабаты для 1-,2- и 3-атомного идеального газа.
  8.  В чем заключается метод Клемана и Дезорма для определения отношения    ?
  9.  Опишите рабочий цикл экспериментальной установки по  P-V диаграмме.
  10.  Выведите расчетную формулу для определения
  11.  Как и почему изменяется температура газа в колбе при проведении опыта?


PAGE  4


 

А также другие работы, которые могут Вас заинтересовать

75251. Противообледенительные устройства летательных аппаратов 5.98 MB
  Нагревательные элементы приемников полного и статического давления воздуха РИО3 СО4А и ДУА питаются постоянным током напряжением 27 В а лопасти винтов и их обтекатели – переменным током напряжением 115 В 400 Гц. Расход воздуха отбираемого от двигателей: для ПОС крыла и хвостового оперения. Температура воздуха отбираемого от двигателя для нужд ПОС. Давление воздуха отбираемого от двигателя для нужд ПОС до 7кгс см2; 4.
75252. Противопожарное оборудование летательных аппаратов 1.42 MB
  Основной формой проведения практических занятий считать осмотр самолетов и вертолетов их вспомогательных агрегатов той или иной системы на стендах. Противопожарное оборудование самолета состоит из стационарной противопожарной системы и ручных переносных огнетушителей. Стационарная противопожарная система состоит из противопожарной системы самолета и противопожарной системы двигателей. Обе системы имеют общую электросистему и щиток пожаротушения.
75253. Бытовое оборудование летательного аппарата 1.48 MB
  Решать комплексные задачи по оценке работоспособности ЛА и их систем в целом и в каждом конкретном полете при заданном уровне безопасности полетов (БП) и целесообразной экономической эффективности
75254. Гидравлическая система летательных аппаратов 1.06 MB
  Цели и задачи обучения В процессе изучения дисциплины Конструкция и эксплуатация летательных аппаратов и вертолетов ЛА студенты ознакамливаются: с материалами используемыми при изготовлении Л и вертолетов; с назначениями и конструкцией основных элементов планера Л фюзеляжа крыла хвостового оперения; с назначениями и конструкции взлетнопосадочных устройств; с назначениями и конструкцией систем ЛА управления гидравлической топливной высотной противоположной бытового оборудования...
75255. Топливная система летательных аппаратов 729 KB
  Топливная система самолёта предназначена для размещения топлива на самолёте и подачи его к двигателям АИ24ВТ и РУ19А300. На самолёте не предусмотрено системы аварийного слива топлива. Система выработки топлива состоит из 2х аналогичных систем расположенных в левой и правой плоскостях.12; В соответствии с порядком выработки топлива все баки делятся...
75256. Высотное оборудование летательного аппарата 696.5 KB
  Изучение особенностей конструкции и принципов работы элементов, узлов, агрегатов планера и функциональных систем современных самолетов. Знания, полученные при изучении курса «Конструкция самолета и вертолета» дают возможность по эксплуатации самолетов и вертолета самостоятельно...