49981

Ознайомитись з явищем поляризації світла, експериментально перевірити закон Малюса і закон Брюстера

Лабораторная работа

Физика

Прилади і обладнання Джерело світла поляризатор аналізатор набір скляних пластин чорне дзеркало прилад для вимірювання інтенсивності світла Опис установки Експериментальна лабораторна установка рис.1 дозволяє: отримати лінійно поляризоване світло за допомогою поляризатора; експериментально перевірити закон Малюса і закон Брюстера...

Украинкский

2014-01-13

578 KB

2 чел.


 Лабораторна робота № 3

Вивчення явища поляризації світла

Мета роботи

Ознайомитись з явищем поляризації світла, експериментально перевірити закон Малюса і закон Брюстера

Для виконання лабораторної роботи студенту попередньо необхідно: знати фізичну суть явища поляризації світла (§2.3.1), закон Малюса (§2.3.1) і закон Брюстера (§2.3.2)

Прилади і обладнання

Джерело світла, поляризатор, аналізатор, набір скляних пластин, чорне дзеркало, прилад для вимірювання інтенсивності світла

Опис установки

Експериментальна лабораторна установка (рис.1) дозволяє:

  •  отримати лінійно поляризоване світло за допомогою поляризатора;
  •  експериментально перевірити закон Малюса і закон Брюстера;
  •  визначати ступінь поляризації світла.

Рис. 1

1 джерело світла; 2 поляризатор в оправі з шкалою кутів повороту; 3 аналізатор в оправі з шкалою кутів повороту; 4 фотоприймач; 5 набір скляних пластин на поворотному столику;

6 чорне дзеркало на поворотному столику; 7 прилад для  реєстрації інтенсивності світла; 8 блок живлення джерела світла; 9 регулятор інтенсивності світла.

Послідовність виконання роботи

ЗАВДАННЯ 1. Перевірити закон Малюса

Частина 1.

  1.  Скласти оптичну схему у такій послідовності: джерело світла 1, поляризатор 2, фотоприймач 3. УВАГА! При переміщенні оптичних елементів їх слід брати обережно за нижню частину оправи.
  2.  Увімкнути блок живлення 8 джерела світла в мережу 220 В і встановити регулятор інтенсивності світла 9 в середнє положення.
  3.  Домогтися, щоб центральна частина поляризатора 2 була максимально освітлена.
  4.  Обертаючи поляризатор 2 встановити його головну площину у вертикальне положення (головна площина поляризатора вказана на шкалі кутів повороту поляризатора стрілкою ↨Е).
  5.  Під’єднати фотоприймач 4 до приладу 7, призначеного для реєстрації інтенсивності світла. Регулюючи фотоприймач 4 за висотою, домогтися максимальної освітленості його центральної частини.
  6.  Увімкнути прилад 7 в мережу 220 В і встановити його чутливість на діапазон “1”.
  7.  Регулятором 9 домогтися відхилення стрілки міліамперметра на приладі 7 приблизно на 4/5 шкали. Це значення фотоструму  буде відповідати інтенсивності світла , яке пройшло через поляризатор.

Частина 2.

  1.  Скласти оптичну схему в такій послідовності: джерело світла 1, поляризатор 2, аналізатор 3, фотоприймач 4.

Далі:

  1.  Обертаючи аналізатор 3 встановити його головну площину паралельно до головної площини поляризатора 2. Умові =0, згідно закону Малюса  (2.39), відповідає максимальне значення інтенсивності світла (), що проходить через оптичну систему. Отримане при цьому значення фотоструму  записати в таблицю 1.
  2.  Обертаючи далі аналізатор на кут , через кожні 100 від 100 до 3600 записувати значення фотоструму  в таблицю 1.
  3.  Побудувати графік залежності інтенсивності світла , що пройшло через оптичну систему поляризатор–аналізатор, від кута  між головними площинами аналізатора і поляризатора, тобто графік . Вважати, що значення фотоструму  прямо пропорційне інтенсивності світла .
  4.  Вимкнути прилад 7 з мережі 220 В і розмістити поляризатор і аналізатор у вільні рейтери.

Таблиця 1

   № з/п

1

2

3

4

5

6

7

8

9

37

, град

00

100

200

300

400

500

600

700

800

3600

, мА

ЗАВДАННЯ 2. Перевірити закон Брюстера

  1.  Встановити чорне скляне дзеркало 6 в рейтер замість поляризатора 2. УВАГА! Дзеркало брати обережно за нижню частину поворотного столика.
  2.  Повернути дзеркало на столику (не торкаючись руками робочої частини дзеркала) таким чином, щоб падаючий від джерела світла промінь утворював кут 570 з нормаллю до дзеркала. Кут падіння 570 відповідає куту Брюстера для межі розділу середовищ повітря – скло. Напрям нормалі виставити за допомогою міток на поворотному столику.
  3.  Дивлячись на дзеркало в напрямку відбитого променя, побачити зображення джерела світла. За ходом відбитого променя між дзеркалом та оком розмістити аналізатор 3. Тримаючи його в руці за металевий шток, обертати в оправі, домагаючись мінімальної освітленості зображення джерела в дзеркалі. Дослід повторити для кутів падіння 400 та 300. Переконатися, що для кутів падіння, відмінних від кута Брюстера, відбитий промінь є частково поляризованим.
  4.  Визначити площину поляризації відбитого променя, користуючись відомою головною площиною аналізатора (↨Е).
  5.  Поставити чорне дзеркало та аналізатор у вільні рейтери.

ЗАВДАННЯ 3. Визначення ступеня поляризації світла

  1.  Скласти оптичну схему у такій послідовності: джерело світла 1, набір скляних пластин 5, аналізатор 3, фотоприймач 4.
  2.  Увімкнути джерело світла в мережу 220 В (якщо воно було вимкнуте).
  3.  Повернути столик з набором пластин 5 так, щоб падаючий від джерела промінь утворював кут 570 (кут Брюстера) з нормаллю до пластин. Напрям нормалі виставити за допомогою міток на поворотному столику.
  4.  Домогтися, щоб падаючий промінь попадав по центру набору пластин, а прохідний – освітлював центральну частину аналізатора та фотоприймача.
  5.  Під’єднати фотоприймач до приладу 7.
  6.  Увімкнути прилад 7 в мережу 220 В і встановити його чутливість на діапазон “1”.
  7.  Обертаючи аналізатор навколо напрямку поширення світла визначити максимальне () та мінімальне () значення фотоструму , що відповідає відповідно інтенсивності світла  і .
  8.  Розрахувати ступінь поляризації світла, що пройшло через пластини, за формулою

                                                                 .

  1.  Визначити площину поляризації світла, що проходить через пластини, користуючись відомим напрямком головної площини аналізатора (↨Е).
  2.  Дослід повторити для кутів падіння =400, 300, 200, 00 . Результати вимірювань записати в таблицю 2.
  3.  Вимкнути фотоприймач і джерело живлення з мережі 220 В та розмістити набір пластин та аналізатор у вільних рейтерах.
  4.  Проаналізувати отримані результати.

Таблиця 2

№ з/п

1

2

3

4

5

6

, град

00

100

200

300

400

570

Iф max, мA

Iф min, мА

Р, %

Контрольні запитання

  1.  Які хвилі називаються повздовжніми і поперечними?
  2.  В чому полягає явище поляризації світла?
  3.  Що таке природне світло, частково поляризоване світло, лінійно поляризоване світло?
  4.  Що називається площиною поляризації світла (площиною коливань)?
  5.  Чому дорівнює інтенсивність природного світла, яке пройшло через поляризатор?
  6.  Сформулюйте і обґрунтуйте закон Малюса.
  7.  В чому полягає фізичний зміст закону Брюстера?

 


 

А также другие работы, которые могут Вас заинтересовать

20518. Специфікації керування. Побудова діаграм переходів станів. Символи STD. Таблиці і матриці переходів 30 KB
  Символи STD. Діаграми переходів станів STD відносять до групи специфікацій управління які призначені для моделювання і документування аспектів системи повязаних із часом або реакцією на події. STD подають процес функціонування системи як послідовність переходів з одного стану до іншого. До складу STD входять такі структурні одиниці:Стан може визначатися як стійкі внутрішні умови системи.
20519. Шаблони функцій (передача типу в функцію у вигляді параметру). Перевизначення шаблонів функцій. Передача у шаблони додаткових аргументів 27.5 KB
  Шаблони механізм C який дозволяє створювати узагальнені функції і класи які працюють з типами даних які передаються в параметрі. Можна наприклад створити функцію яка сортує масив цілих чисел а можна створити шаблон функції який буде сортувати масиви будьяких даних над якими задані операції порівняння і присвоєння. Шаблон функції виглядає так: template class Ідентифікатор_типу Тип_результату Назва_функціїСписок_параметрів { Тіло функції } Параметр Ідентифікатор_типу задає тип з яким працює функція. Всюди в тілі і заголовку...
20520. Эксплуатация и ремонт металлургических машин 1.54 MB
  Поэтому перед выполнением лабораторной работы необ ходимо ознакомиться с ее содержанием теоретической частью и методикой выполнения. Выполняться могут не все лабораторные работы но студен ты должны знать теоретический материал по всем лабораторным работам. Лабораторные работы выполняются самостоятельно студен тами в составе подгруппы в строгом соответствии с инструкциями в отведенные по расписанию часы занятий. Выполнение и оформление лабораторных работ Перед выполнением работы необходимо повторить учебный материал и накануне подробно...
20522. Схемы соединение гальванических элементов. Схема включения реостата. Схема включения потенциометра 24.5 KB
  Схемы соединение гальванических элементов. Теоретическое обоснование: Последовательное соединение элементов показано на стенде а ЭДС батареи Ебат составленной из последовательно соединенных элементов будет больше ЭДС одного элемента Е в n раз Ебат=Е Последовательное соединение элементов применяется в тех случаях когда требуется напряжение больше чем напряжение одного элемента. Но при любом количестве соединяемых последовательно элементов номинальный ток батареи остается равным номинальному току одного элемента. План работы: Начертить...
20523. Определение потерь напряжения и мощности в проводах линии и электропередачи 69.5 KB
  Определение потерь напряжения и мощности в проводах линии и электропередачи. Выяснить какое влияние оказывает нагрузка линии и сопротивление её проводов на напряжение приемника. Определить мощность потерь в проводах и КПД линии электропередачи. Уменьшение напряжения в линии по мере удаления от источника вызвано потерями напряжения в проводах линии Ui=U1U2 и численно равно падению напряжения.
20524. Исследование электрической цепи переменного тока при последовательном соединении 98.5 KB
  Исследование электрической цепи переменного тока при последовательном соединении. Проверить практически и уяснить какие физические явления происходят в цепи переменного тока. Теоретическое обоснование: При подведении к зажимам последовательно соединённых активного сопротивления R индуктивности L и ёмкости C синусоидального напряжения U=UMsinWt и тока I=IMsinWtU. Действующее значение тока в цепи можно найти по закону Ома: где полное сопротивление цепи.
20525. Исследование полупроводникового диода 28.5 KB
  Исследование полупроводникового диода. Цель работы: Изучение свойств плоскостного диода путём практического снятия и исследования его вольтамперной характеристики. UПР В I A Uобр В I A 06 10 25 10 065 15 5 14 07 20 7 20 075 25 9 26 08 80 11 32 Обработка результатов опытов: По данным таблицы 1 2 в декартовой системе координат построить вольтамперную характеристику диода. Это показывает вольтамперная характеристика диода.
20526. Расчёт полупроводникового выпрямителя 20.5 KB
  Расчёт полупроводникового выпрямителя. Цель работы: Научится элементарному расчету выпрямителя. Наиболее широкое распространение получила схема мостового выпрямителя схема состоит из 4 диодов Д1 Д4. Вторичные обмотки трёхфазного выпрямителя соединены Звездой .