49981

Ознайомитись з явищем поляризації світла, експериментально перевірити закон Малюса і закон Брюстера

Лабораторная работа

Физика

Прилади і обладнання Джерело світла поляризатор аналізатор набір скляних пластин чорне дзеркало прилад для вимірювання інтенсивності світла Опис установки Експериментальна лабораторна установка рис.1 дозволяє: отримати лінійно поляризоване світло за допомогою поляризатора; експериментально перевірити закон Малюса і закон Брюстера...

Украинкский

2014-01-13

578 KB

2 чел.


 Лабораторна робота № 3

Вивчення явища поляризації світла

Мета роботи

Ознайомитись з явищем поляризації світла, експериментально перевірити закон Малюса і закон Брюстера

Для виконання лабораторної роботи студенту попередньо необхідно: знати фізичну суть явища поляризації світла (§2.3.1), закон Малюса (§2.3.1) і закон Брюстера (§2.3.2)

Прилади і обладнання

Джерело світла, поляризатор, аналізатор, набір скляних пластин, чорне дзеркало, прилад для вимірювання інтенсивності світла

Опис установки

Експериментальна лабораторна установка (рис.1) дозволяє:

  •  отримати лінійно поляризоване світло за допомогою поляризатора;
  •  експериментально перевірити закон Малюса і закон Брюстера;
  •  визначати ступінь поляризації світла.

Рис. 1

1 джерело світла; 2 поляризатор в оправі з шкалою кутів повороту; 3 аналізатор в оправі з шкалою кутів повороту; 4 фотоприймач; 5 набір скляних пластин на поворотному столику;

6 чорне дзеркало на поворотному столику; 7 прилад для  реєстрації інтенсивності світла; 8 блок живлення джерела світла; 9 регулятор інтенсивності світла.

Послідовність виконання роботи

ЗАВДАННЯ 1. Перевірити закон Малюса

Частина 1.

  1.  Скласти оптичну схему у такій послідовності: джерело світла 1, поляризатор 2, фотоприймач 3. УВАГА! При переміщенні оптичних елементів їх слід брати обережно за нижню частину оправи.
  2.  Увімкнути блок живлення 8 джерела світла в мережу 220 В і встановити регулятор інтенсивності світла 9 в середнє положення.
  3.  Домогтися, щоб центральна частина поляризатора 2 була максимально освітлена.
  4.  Обертаючи поляризатор 2 встановити його головну площину у вертикальне положення (головна площина поляризатора вказана на шкалі кутів повороту поляризатора стрілкою ↨Е).
  5.  Під’єднати фотоприймач 4 до приладу 7, призначеного для реєстрації інтенсивності світла. Регулюючи фотоприймач 4 за висотою, домогтися максимальної освітленості його центральної частини.
  6.  Увімкнути прилад 7 в мережу 220 В і встановити його чутливість на діапазон “1”.
  7.  Регулятором 9 домогтися відхилення стрілки міліамперметра на приладі 7 приблизно на 4/5 шкали. Це значення фотоструму  буде відповідати інтенсивності світла , яке пройшло через поляризатор.

Частина 2.

  1.  Скласти оптичну схему в такій послідовності: джерело світла 1, поляризатор 2, аналізатор 3, фотоприймач 4.

Далі:

  1.  Обертаючи аналізатор 3 встановити його головну площину паралельно до головної площини поляризатора 2. Умові =0, згідно закону Малюса  (2.39), відповідає максимальне значення інтенсивності світла (), що проходить через оптичну систему. Отримане при цьому значення фотоструму  записати в таблицю 1.
  2.  Обертаючи далі аналізатор на кут , через кожні 100 від 100 до 3600 записувати значення фотоструму  в таблицю 1.
  3.  Побудувати графік залежності інтенсивності світла , що пройшло через оптичну систему поляризатор–аналізатор, від кута  між головними площинами аналізатора і поляризатора, тобто графік . Вважати, що значення фотоструму  прямо пропорційне інтенсивності світла .
  4.  Вимкнути прилад 7 з мережі 220 В і розмістити поляризатор і аналізатор у вільні рейтери.

Таблиця 1

   № з/п

1

2

3

4

5

6

7

8

9

37

, град

00

100

200

300

400

500

600

700

800

3600

, мА

ЗАВДАННЯ 2. Перевірити закон Брюстера

  1.  Встановити чорне скляне дзеркало 6 в рейтер замість поляризатора 2. УВАГА! Дзеркало брати обережно за нижню частину поворотного столика.
  2.  Повернути дзеркало на столику (не торкаючись руками робочої частини дзеркала) таким чином, щоб падаючий від джерела світла промінь утворював кут 570 з нормаллю до дзеркала. Кут падіння 570 відповідає куту Брюстера для межі розділу середовищ повітря – скло. Напрям нормалі виставити за допомогою міток на поворотному столику.
  3.  Дивлячись на дзеркало в напрямку відбитого променя, побачити зображення джерела світла. За ходом відбитого променя між дзеркалом та оком розмістити аналізатор 3. Тримаючи його в руці за металевий шток, обертати в оправі, домагаючись мінімальної освітленості зображення джерела в дзеркалі. Дослід повторити для кутів падіння 400 та 300. Переконатися, що для кутів падіння, відмінних від кута Брюстера, відбитий промінь є частково поляризованим.
  4.  Визначити площину поляризації відбитого променя, користуючись відомою головною площиною аналізатора (↨Е).
  5.  Поставити чорне дзеркало та аналізатор у вільні рейтери.

ЗАВДАННЯ 3. Визначення ступеня поляризації світла

  1.  Скласти оптичну схему у такій послідовності: джерело світла 1, набір скляних пластин 5, аналізатор 3, фотоприймач 4.
  2.  Увімкнути джерело світла в мережу 220 В (якщо воно було вимкнуте).
  3.  Повернути столик з набором пластин 5 так, щоб падаючий від джерела промінь утворював кут 570 (кут Брюстера) з нормаллю до пластин. Напрям нормалі виставити за допомогою міток на поворотному столику.
  4.  Домогтися, щоб падаючий промінь попадав по центру набору пластин, а прохідний – освітлював центральну частину аналізатора та фотоприймача.
  5.  Під’єднати фотоприймач до приладу 7.
  6.  Увімкнути прилад 7 в мережу 220 В і встановити його чутливість на діапазон “1”.
  7.  Обертаючи аналізатор навколо напрямку поширення світла визначити максимальне () та мінімальне () значення фотоструму , що відповідає відповідно інтенсивності світла  і .
  8.  Розрахувати ступінь поляризації світла, що пройшло через пластини, за формулою

                                                                 .

  1.  Визначити площину поляризації світла, що проходить через пластини, користуючись відомим напрямком головної площини аналізатора (↨Е).
  2.  Дослід повторити для кутів падіння =400, 300, 200, 00 . Результати вимірювань записати в таблицю 2.
  3.  Вимкнути фотоприймач і джерело живлення з мережі 220 В та розмістити набір пластин та аналізатор у вільних рейтерах.
  4.  Проаналізувати отримані результати.

Таблиця 2

№ з/п

1

2

3

4

5

6

, град

00

100

200

300

400

570

Iф max, мA

Iф min, мА

Р, %

Контрольні запитання

  1.  Які хвилі називаються повздовжніми і поперечними?
  2.  В чому полягає явище поляризації світла?
  3.  Що таке природне світло, частково поляризоване світло, лінійно поляризоване світло?
  4.  Що називається площиною поляризації світла (площиною коливань)?
  5.  Чому дорівнює інтенсивність природного світла, яке пройшло через поляризатор?
  6.  Сформулюйте і обґрунтуйте закон Малюса.
  7.  В чому полягає фізичний зміст закону Брюстера?

 


 

А также другие работы, которые могут Вас заинтересовать

75736. Весовой метод определения концентрации пыли. Нормирование ее содержания в воздухе. Пути снижения запыленности воздуха на предприятии 32 KB
  Пути снижения запыленности воздуха на предприятии. Весовой метод измерения запыленности воздуха совокупность приемов и правил определения массы пылевых частиц в единице объема воздуха. состоит в выделении пылевых частиц из известного объема запыленного воздуха с последующим их взвешиванием. Выделение осуществляется протягиванием воздуха через фильтр на котором пылинки задерживаются; привес фильтра определяет общее количество пыли содержащееся в данном объеме воздуха.
75737. Качество воздуха и виды промышленной вентиляции 64 KB
  Качество воздуха и виды промышленной вентиляции Под качеством атмосферного воздуха понимают совокупность свойств атмосферы определяющую степень воздействия физических химических и биологических факторов на людей растительный и животный мир а также на материалы конструкции и окружающую среду в целом. Нормативами качества воздуха определены допустимые пределы содержания вредных веществ как в производственной предназначенной для размещения промышленных предприятий опытных производств научно-исследовательских институтов и т....
75738. Промышленный шум, меры борьбы с ним 49 KB
  В различных отраслях экономики на предприятиях и фирмах имеются источники шума это оборудование машины работа которых сопровождается шумом людские потоки. Постоянно находящийся в этих условиях персонал рабочие операторы подвергаются воздействию шума вредно действующего на их организм и снижающего производительность труда. Длительное воздействие шума может привести к развитию такого профессионального заболевания как шумовая болезнь. Тональный характер шума устанавливается измерением в третьоктавных полосах частот по...
75739. Вибрация, причины ее возникновения. Негативное воздействие вибрации на организм человека(профессиональные заболевания). Организация контроля ее параметров 63 KB
  Негативное воздействие вибрации на организм человека профессиональные заболевания. Основными параметрами вибрации происходящей по синусоидальному закону являются: частота амплитуда смещения скорость ускорение период колебания время в течение которого совершается одно полное колебание. Технологическую которая возникает при работе стационарных машин или передается на рабочие места не имеющие источников вибрации. Генераторами технологической вибрации является оборудование: лесопильное деревообрабатывающее для изготовления...
75740. Определение величин, характеризующих вибрацию (виброскорость, виброускорение, логарифмический уровень виброскорости) 39.5 KB
  Источниками вибрации являются различные технологические процессы механизмы машины и их рабочие органы. Воздействие вибрации на человека классифицируется: по способу передачи вибрации на организм человека; по направлению действия вибрации; по временной характеристике вибрации. Вибрации воздействующая на отдельные части организма работающего определяется как локальная. Показателями вибрационной нагрузки на оператора являются виброускорение виброскорость диапазон частот время воздействия вибрации.
75741. Понятие вибрации. Воздействие вибрации на организм человека. Способы защиты от вредного воздействия вибрации 16.65 KB
  Понятие вибрации. Воздействие вибрации на организм человека. Способы защиты от вредного воздействия вибрации. По способу передачи на человека вибрации подразделяются на общую передающуюся через опорные поверхности на тело человека и локальную передающуюся через руки человека.
75742. Электромагнитное излучение. Негативное воздействие на организм человека 20.25 KB
  Биологический эффект зависит от физических параметров ЭМП радиочастот: длины волны частоты колебаний интенсивности и режима излучения непрерывный прерывистый импульсно модулированный продолжительности и характера облучения организма постоянное интермиттирующее...
75743. Защита от электромагнитного излучения. Эффективность защиты 18.88 KB
  Эффективность защиты. Средства и методы защиты от ЭМП делятся на три группы: организационные инженерно-технические и лечебно-профилактические. В качестве средств индивидуальной защиты рекомендуется специальная одежда выполненная из металлизированной ткани и защитные очки. Средства защиты от электрического поля частотой 50 Гц: стационарные экранирующие устройства козырьки навесы перегородки; переносные передвижные экранирующие средства защиты инвентарные навесы палатки перегородки щиты зонты экраны...
75744. Виды производственного освещения. Виды естественного освещения. Понятие к.е.о. Расчет площади световых проемов и количества окон 21.74 KB
  Виды производственного освещения. Виды естественного освещения. В зависимости от источника света производственное освещение может быть: естественным создаваемым солнечными лучами и диффузным светом небосвода; искусственным его создают электрические лампы; смешанным которое является совокупностью естественного и искусственного освещения. Местное освещение предназначено для освещения только рабочих поверхностей и не создает необходимой освещенности даже на прилегающих к ним площадях.