50001

Визначення опору провідників за допомогою містка постійного струму

Лабораторная работа

Физика

Одним з найпростіших і найточніших методів є метод визначення опору провідників за допомогою містка постійного струму Уітстона . Теорія містка постійного струму ґрунтується на правилах Кірхгофа 316а і 318 . Принципова схема містка Уітстона зображена на рис.

Украинкский

2014-01-14

109 KB

3 чел.

Лабораторна робота № 4

Визначення опору провідників за допомогою містка постійного струму

(містка Уітстона )

Теоретичні відомості

Перед виконанням цієї роботи , необхідно вивчити теоретичний матеріал, приведений в розділах 3.1 і 3.2.

Опір провідника можна вимірювати різними методами. Одним з найпростіших і найточніших методів є метод визначення опору провідників за допомогою містка постійного струму   ( Уітстона ). Теорія містка постійного струму ґрунтується на правилах  Кірхгофа  (  3,16а) і ( 3,18 ).

Принципова схема містка Уітстона зображена на рис. 3.6.

Для практичного застосування правил Кірхгофа   вибирають , умовний напрям „обходу” контуру  на рис.3.6 зображено стрілками всередині відповідних контурів).

Складаємо рівняння за першим правилом Кірхгофа (напрями струмів через резистори   R. ,  Rm, R1 i R2 вибирають умовно ) для вузлів  А, В, С:

І = Іх + І1         ( для вузла А ) ,        (3.19)

Іx = Іm + Іr        ( для вузла В ) ,        (3.20)

І = Іm + І2         ( для вузла С ) .         (3.21)

Складаємо рівняння за другим правилом Кірхгофа :

IxRx  +  IгRг - I1R1 = 0     ( для контуру АВDА ) ;       (3.22)

 ImRm -  I2R2 - IrRr = 0     ( для контуру ВСDВ ) .      (3.23)

Якщо змінювати опори Rm ,  R1, R2, то при певних значеннях цих опорів потенціали точок B i D будуть рівними, тоді струм Ir = 0. Врахувавши це у формулах (3.19) – (3.23) отримаємо :

     Iх   =  Im ;

     I1 =  I2;

     I1R1   = IхRx ;

    I2R2   = ImRm .

Розв’язавши  цю систему, дістаємо:

.        (3.24)

Коли ділянкою   АDС  є однорідна прокалібрована дротина ( реохорд ), то відношення  можна замінити  відношенням довжин відповідних відрізків дроту АD і DС. Справді,

,      (3.25)

де - питомий опір матеріалу, з якого виготовлений реохорд; S –площа поперечного перерізу дротини  ( реохорду ). Остаточно невідомий опір

.       (3.26)

Якщо довжина реохорду , то,

.     (3.27)

Оскільки опір реохорду порівняно невеликий, місток Уітстона, описаного типу застосовується, як правило, для вимірювання невеликих опорів ( від 1 до 1000 Ом ).

Проаналізуємо умову найменшої похибки, зумовленої відліком довжин провідників  і . Відносна похибка вимірювань

 =

=         (3.28)

буде мінімальною тоді, коли знаменник виразу ( 3.27 ) буде максимальним. Знаходимо умову максимуму для функції  ;

.      (3.29)

Звідси .  Таким чином, похибка буде мінімальною, коли при нульовому струмі через гальванометр бігунок Д  стоятиме посередині реохорду () . У цьому випадку вираз (3.27) набуде вигляду Rx = Rm.

Порядок виконання роботи

  1.  Скласти  електричне коло відповідно до схеми ( рис. 3.7 ) увімкнувши  замість Rx  один  з запропонованих резисторів.

  1.  Установити показник реохорду D приблизно посередині колової шкали і за допомогою магазину опору підібрати такий опір Rm , щоб при замиканні кола ключем К відхилення стрілки гальванометра було найменшим, а потім, обертаючи показник шкали реохорда, домагаються, щоб стрілка гальванометра встановилась на поділці 0. За шкалою реохорду  визначити величини   і  (, де - довжина реохорда ). Вимірювання провести тричі
  2.  Результати вимірювань та розрахунків записати у таблицю.   

п/п

Rm , Ом

, под.

Rx , Ом

,

Ом

Результати вимірювань за допомогою промислового містка.

, Ом

1

3

2

3

Середнє

значення.

  1.  Аналогічні вимірювання провести для інших невідомих резисторів. Вимірювання кожного з невідомих резисторів слід провести тричі й результати занести до наступних таблиць.
  2.  Визначити похибки вимірювань.
  3.  Виміряти невідомий опір Rx за допомогою промислового містка постійного струму. Отримане значення порівняти з результатами вимірювань, проведених за допомогою містка  Уітстона.

Контрольні питання

  1.  Пояснити принцип дії містка постійного струму ( Уітстона ).
  2.  Сформулювати правила Кірхгофа.
  3.  Вивести розрахункову формулу для визначення опору провідника містком Уітстона.


 

А также другие работы, которые могут Вас заинтересовать

10447. Методы передискретизации изображений 853 KB
  Методы передискретизации изображений. Задача передискретизации изображений является весьма распространенной задачей которую необходимо решать в цифровой обработке изображений. В простейшем случае передискретизация изображений используется при изменении масштаба ...
10448. Использование фильтров и медианной фильтрации для подавления шумов различных видов 46 KB
  Использование фильтров и медианной фильтрации для подавления шумов различных видов. Подавление шумов – одна из наиболее часто встречающихся задач в обработке изображений. Как правило шум является дельта-коррелированным. Исключением может являться лишь шум связанный ...
10449. Соответствие между дискретным преобразованием Фурье, рядом Фурье и непрерывным преобразованием Фурье 62.5 KB
  Соответствие между дискретным преобразованием Фурье рядом Фурье и непрерывным преобразованием Фурье. Как правило сигнал представленный в цифровом виде состоит из последовательности из последовательности из N отсчетов – xn. Такому сигналу можно поставить в соответс
10450. Математическое описание непрерывных изображений. Преобразование Фурье. Дискретизация и восстановление изображений. Теорема Котельникова 163 KB
  Математическое описание непрерывных изображений. Преобразование Фурье. Дискретизация и восстановление изображений. Теорема Котельникова. А. Распределение освещенности на изображении описывается в общем случае непрерывной функцией от четырех переменных – двух про
10451. Схемы переходов от непрерывных преобразований к дискретным преобразованиям 44 KB
  Схемы переходов от непрерывных преобразований к дискретным преобразованиям. Введем определения следующих операций: Частотным окном FW frequency window называется ограничение спектра сигнала по частоте. При этом спектр сигнала становится финитным. Окно не обязательно дол
10452. Глаз и психофизические свойства зрения. Зрительные явления. Модель одноцветного зрения. Модель цветного зрения 301 KB
  Глаз и психофизические свойства зрения. Зрительные явления. Модель одноцветного зрения. Модель цветного зрения. На выходе изображающих систем обычно создается фотоснимок или изображение на экране которые рассматриваются человеком. Поэтому очевидно что для эффективн
10453. Квантование изображений. Фотометрия и колориметрия. Преобразование координат цвета. Цветовое тело 788.5 KB
  Квантование изображений. Фотометрия и колориметрия. Преобразование координат цвета. Цветовое тело. Рассмотрим случай чернобелого панхроматического изображения. Для его представления в цифровом виде величину каждого отсчета дискретного изображения необходимо предс...
10454. Двумерные унитарные преобразования. Преобразование Фурье, косинусное, синусное, Адамара, Хаара 2.03 MB
  Двумерные унитарные преобразования. Преобразование Фурье косинусное синусное Адамара Хаара. А. Унитарные преобразования являются частным случаем линейных преобразований когда линейный оператор точно обратим а его ядро удовлетворяет условию ортогональности. В...
10455. Вейвлет-преобразование. Алгоритмы Лифтинга и Маллата 192.5 KB
  Вейвлетпреобразование. Алгоритмы Лифтинга и Маллата. Вейвлет компрессия в последнее время стала передовой технологией среди методов представления и сжатия сигналов и изображений. Методы сжатия с вейвлет преобразованием можно отнести к классу методов с исполь