50017

Анализ пропускной способности каналов систем электрической связи

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Анализ пропускной способности дискретного канала. На основе изученных на предыдущих занятиях и самостоятельной работе пропускной способности дискретного канала и инженерных методов расчета ее в среде MthCD произвести расчет и анализ пропускной способности дискретного канала. Пропускная способность дискретного mичного канала определяется выражением: где: V скорость модуляции [Бод] p вероятность ошибки сигналов в канале m число вариантов кодовых символов основание кода например m=2 4 8 16 . Пропускная способность двоичного...

Русский

2014-01-14

61.5 KB

10 чел.

"УТВЕРЖДАЮ"

Начальник кафедры

полковник        А. Дормидонтов

«18»  мая  2004 г.

ПЛАН ПРОВЕДЕНИЯ ЗАНЯТИЯ

по "Теория электрической связи"

Тема № 4 «Теория передачи информации».

Занятие № 5 «Анализ пропускной способности каналов систем электрической связи».

Учебные и воспитательные цели:

1. Изучить методику расчета пропускной способности каналов связи.

2. Формировать навыки решения расчетно-аналитических задач при моделировании систем электрической связи.

3. Активизировать познавательную деятельность курсантов, формировать творческое мышление.

Учебные группы: 121, 122, 123, 322

Вид занятия: практическое занятие

Время: 2 часа    Дата проведения 21 мая 2004 года

Место проведения: 106, 108 ауд.

Учебно-материальное обеспечение: ПЭВМ

п/п

Учебные вопросы и методика их изложения

Время

Примечание

1

2

3

4

I.

II.

III.

Вступительная часть

Принимаю доклад, проверяю наличие личного состава; объявляю тему, цель и учебные вопросы занятия. Провожу инструктаж по технике безопасности.

После этого проверяю подготовленность учебной группы к занятию с помощью письменного опроса.

Основная часть

1. Анализ пропускной способности дискретного канала.

На основе изученных на предыдущих занятиях и самостоятельной работе пропускной способности дискретного канала и инженерных методов расчета ее в среде MathCAD, произвести расчет и анализ пропускной способности дискретного канала. Ответить на возникшие вопросы, задать обучаемым наводящие вопросы, обратить внимание на наиболее типичные ошибки на данном этапе. Завершить рассмотрение вопроса краткими выводами.

Пропускная способность дискретного m-ичного канала определяется выражением:

где:  V - скорость модуляции, [Бод]  

p - вероятность ошибки сигналов в канале

m - число вариантов кодовых символов (основание кода, например m=2, 4, 8, 16, ...)

Пропускная способность двоичного канала (т.е. при m=2) определяется выражением:  

При расчетах необходимо учитывать, что микрокалькуляторы и программа Mathcad производят вычисления только с десятичными и натуральными логарифмами.   

Для перехода от десятичного к двоичному логарифму необходимо воспользоваться выражением:  

Выполнить:

1.1. Выписать основные выражения по которым производятся расчеты.

1.2. Ввести исходные данные для произведения расчетов зависимости пропускной способности от вероятности ошибки (р) при фиксированной скорости передачи (V):

1.3. Перечертить диаграмму зависимости пропускной способности двоичного канала от вероятности ошибки в канале

1.4. Произвести расчеты пропускной способности двоичного канала для (р=0.1,0.5 и 0.9)

1.5. Ввести исходные данные для произведения расчетов зависимости пропускной способности от вероятности ошибки (р) при изменении скорости передачи (V):

Введите скорость модуляции в Битах (пункт 1.2.) (использовать значения: 50, 100, 200 Бит)

1.6. Произвести расчеты пропускной способности дискретного канала для значений m=4, 8, 16

1.7. Перечертить диаграмму зависимости пропускной способности дискретного канала, при заданных значениях m, от вероятности ошибки в канале

1.8. Сформулировать выводы по проведенным исследованиям и доложить преподавателю об окончании отработки первого вопроса.

2. Анализ пропускной способности непрерывного канала.

Пропускная способность непрерывного канала определяется выражением:  

где:  F - полоса пропускания канала, [Гц]  

- отношение мощности сигнала к мощности шума в канале (ОСШ)

Выполнить:

2.1. Выписать основные выражения по которым производятся расчеты

2.2. Ввести исходные данные для произведения расчетов зависимости пропускной способности от ОСШ (h) при фиксированном значении полосы пропускания канала (F)

2.3. Перечертить диаграмму зависимости пропускной способности двоичного канала от вероятности ошибки в канале

2.4. Ввести исходные данные для произведения расчетов зависимости пропускной способности от ОСШ (h) при изменении значений полосы пропускания канала (F)

Введите полосу пропускания канала (F) (пункт 2.2.) (использовать значения: 3100, 6000, 12000 Гц)

2.5. Сформулировать выводы по проведенным исследованиям и доложить преподавателю об окончании отработки второго вопроса.

Заключительная часть

Подвожу итоги занятия. По результатам работы обучаемых и проведенного опроса определяю степень усвоения материала и предварительно оцениваю работу каждого обучаемого.

Курсантам сдавшим расчеты в ходе занятия, по результатам их проверки и предварительных итогов выставляю окончательную оценку. Остальным курсантам объявляю, что оценки по их работам будут доведены после  проверки. Ставлю задачу дежурному собрать выполненные расчеты, литературу. Выдаю задание на самоподготовку.

Задание на самоподготовку:

1. Оформить отчет и отчитаться в течение недели после проведения занятия.

2. Быть в готовности к проведению устного опроса на следующем занятии.

Литература, рекомендуемая преподавателю

1. [Л. 1] Теория электрической связи. Учебник для вузов. А.Г. Зюко, Д.Д. Кловский, В.И. Коржик, М.В. Назаров. / Под ред. Д.Д. Кловского. – М.: Радио и связь, 1999. с. 246–251.

2. [Л. 2] Н.Л. Теплов Теория передачи сигналов по электрическим каналам связи. – М.: МО СССР, 1976. с. 369-371, 377–381.

15

70

35

35

5

Старший преподаватель кафедры

подполковник    А. Нестеренко 

20 мая 2004 года


 

А также другие работы, которые могут Вас заинтересовать

19951. Предположение о равенстве зернограничных параметров переноса в низкотемпературной и высокотемпературной области для образца с (Топливо ВВЭР) 93.93 KB
  Ввести предположение о равенстве зернограничных параметров переноса в низкотемпературной и высокотемпературной области для образца с (Топливо ВВЭР). Рассмотреть связи (аналитическая и графическая форма) между параметрами переноса и влияние на них указанного выше предположения. Представить численные значения параметров переноса и погрешности их восстановления. Сопоставить полученные результаты с данными других авторов.
19952. Результаты экспериментальных исследований влияния деформации ползучести на выход ГПД 59.44 KB
  Познакомить слушателей с результатами экспериментальных исследований влияния деформации ползучести на выход ГПД. Предложить диффузионно-конвективную модель для описания выхода ГПД при наличии пластической деформации. Поставить и решить стационарную задачу. Сопоставить аналитическое решение с экспериментом.
19953. Современный этап развития ядерной энергетики. Реакторы на тепловых и быстрых нейтронах 87.44 KB
  Конкретные пути решения задач, поставленных Президентом, представлены в «Стратегии развития ядерной энергетики России до середины XXI века», принятой Минатомом России в 2000-м году и одобренной Правительством РФ. В последующие годы были разработаны и приняты к исполнению ряд конкретных программ по направлениям. Некоторые из них включают разделы связанные непосредственно с решением проблем экологии и выводом АЭС из эксплуатации, эти задачи обеспечиваются значительной финансовой поддержкой.
19954. Элементы активной зоны ядерного реактора и реакторные испытания 30.76 KB
  Снижение затрат в процессе разработки твэлов удается достигнуть при использовании расчетных программ определения их работоспособности. Использование в программах расчета феноменологических характеристик материалов требует экспериментального исследования последних в режимах, близких к режимам эксплуатации материалов в твэлах. Знание этих характеристик особенно важно для разработчиков твэлов.
19955. Программа комплексной стандартизации методов, облучательных устройств и технических требований к реакторным и стендовым испытаниям 23.73 KB
  Рассмотреть программу комплексной стандартизации методов, облучательных устройств и технических требований к реакторным и стендовым испытаниям. Познакомить слушателей с каталогом и рубрикатором методов радиационных испытаний материалов и изделий ядерной техники в реакторах и защитных камерах и отраслевыми стандартами.
19956. Классификаций реакторных испытаний 28.86 KB
  Любую классификацию, по-видимому, следует рассматривать как, достаточно, подвижную форму упорядочения наших представлений. Именно поэтому ее не следует считать законченной и устоявшейся. К представленной ниже классификации необходимо относиться как к одному из многих возможных вариантов, который может дополняться и уточняться.
19957. Исследовательские реакторы ИРТ-2000 (проект) и ИРТ-МИФИ 28.79 KB
  Рассмотреть ядерный исследовательский реактор как источник излучений для реакторных испытаний. Познакомить слушателей с техническими характеристиками исследовательских реакторов Российской Федерации. Обосновать выбор реакторов для последующего детального рассмотрения. Дать общие представления о проекте типового исследовательского реактора ИРТ-2000 и рассмотреть возможности реактора ИРТ-МИФИ.
19958. Исследовательский реактор ИВВ-2- пример максимально возможного использования оборудования типового проекта ИРТ-2000 29.79 KB
  Познакомить слушателей с техническими характеристиками исследовательского реактора ИВВ-2, результатами его модернизации, устройством активной зоны и его возможностями и приспособленностью для проведения реакторных испытаний. Рассмотреть картограмму активной зоны и распределения потоков излучений по экспериментальным каналам.
19959. Исследовательский реактор СМ-2- пример достижения максимально возможных значений плотностей нейтронных потоков 214.92 KB
  Познакомить слушателей с техническими характеристиками исследовательского реактора CМ-2, устройством активной зоны и его возможностями для проведения реакторных испытаний. Рассмотреть картограмму активной зоны и распределения потоков излучений по экспериментальным каналам.