5005

Выбор системы автоматического управления сверлильно-расточно-фрезерного станка модели 600V

Контрольная

Производство и промышленные технологии

Выбрать систему автоматического управления сверлильно-расточно-фрезерного станка модели 600V, проспект Стерлитамакского станкостроительного завода прилагается. Список сокращений САУ – система автоматического управления УЧПУ...

Русский

2012-12-01

100 KB

21 чел.

  1.  Задание

Выбрать систему автоматического управления сверлильно-расточно-фрезерного станка модели 600V, проспект Стерлитамакского станкостроительного завода прилагается.

1.1 Список сокращений

САУ – система автоматического управления

УЧПУ – устройство числового программного управления

ЭШ – электрический шкаф

ПУ – пульт управления

ГПУ – главный пульт управления

РО – рабочий орган

КС – коробка скоростей

УТП – управляющая технологическая программа

БПМО – базовое программное математическое обеспечение

Ин. – инструмент

Из - изделие

  1.  Краткие характеристики конструкции и технические характеристики станка

На основании проспекта, станок выполняет технологические операции:

сверление, рассверливание, центрование и зенкерование отверстий

фрезерование плоскостей пространственных деталей

Особенности конструкции:

литые корпусные детали из чугуна, усиленные ребрами жесткости для лучшей устойчивости;

Высокоточный шпиндель( максимальная частота вращения 6000 об/мин, шпиндельные подшипники производства «F.A.G» Германия)

Большое рабочее пространство

Жесткий рабочий стол(максимальная масса заготовки 800 кг, направляющие качения производства “Rexroth Star”, 4 направляющие по оси Y, шариковые винты диаметром 50 – 10 мм.)

Нарезание резьбы в отверстии метчиками

Технические характеристики станка приведены в таблице 1

Таблица 1

Параметры обработки

Наибольший диаметр сверления, мм

40

Наибольший диаметр растачивания, мм

160

Наибольший диаметр торцевой фрезы, мм

125

Диапазон резьб, нарезаемых метчиками

М3-М24

Наибольшая масса детали, кг

800

Параметры стола

Размер рабочей поверхности стола, мм

1250x600

Параметры рабочей поверхности стола

Т-образные пазы: 1х18Н7,4х18Н11

шаг 160 мм

расстояние от торца шпинделя до стола, мм

800

Перемещения

Наибольшее перемещение по осям в мм

-- продольное перемещение стола(Х)

1000

-- поперечное перемещение стола (Y) 

570

-- вертикальное перемещение стола (Z)

600

Ускоренные хода по всем осям, м/мин

15

Точность

Точность позиционирования по всем осям в мм

±0,010

Повторяемость, мм

±0,005

Главный привод

Мощность главного привода, кВт

11

Диапазон частоты вращения, об/мин

0-6000

Прочие характеристики

Инструментальный магазин

Без манипулятора, 20  инструментов

Время смены, сек

7

Конус шпинделя 7:24

SK 40

Рабочие подачи мм/мин

1,,,10000

Масса, кг

8400

Габаритные размеры

(длина х ширина х высота)

2800х2700х3210

Рабочее напряжение

380В/3 фазы/50Гц

Система ЧПУ стандартное исполнение

Частота вращения главного двигателя, об/мин

2000

Частота вращения всех приводов подачи

2000

Момент по координатам x и y Н*м

27

Момент по координате z , Н*м

20

2.1 Схема движения для типовых технологических операций

Схема движения при сверлении и фрезеровании показана на рис. 1.

1 – станина

2- рабочий стол

3 – Изделие

4 – Шпиндельная бабка

5 – Шпиндель

6 - Стойка

Описание схемы движения.

Главное движение – вращение инструмента (сверла, фрезы) вместе со шпинделем – n.

Движения подачи:

  •  продольное движение шпинделя координата z S1
  •  движение рабочего стола S2 координата y
  •  движение рабочего стола S3 координата x

Всего 1 гл + 3 движения подачи. 4 движения.

  1.  Определение требований к САУ станка

3.1 Состав САУ

САУ  станка состоит из УЧПУ,и его компонентов(пультов, ПО)  силового преобразователя, двигателей с датчиками,

3.2 Требуемые технические характеристики САУ

Условия работы,внешняя среда:

Климатические условия температура окружающего воздуха 5 – 45 ˚С влажность не более 80%, высота над уровнем моря не более 100 м.

Электрическая сеть трехфазная 50 Гц, 220/380 В(±10%)

напряженность поля радиопомех, создаваемого САУ и ее компонентами, не должна превышать 60 дБ при 0,15 – 0,5 МГц, 54 дБ при 0,5 – 2,5 МГц и 46 дБ свыше 2,5 МГц

уровень акустического шума, создаваемого САУ (кроме электродвигателей), не должен превышать 65 дБ (электродвигатели 60 – 75 дБ).

Конструктивные требования

  •  степень защиты от внешних воздействий(пыли, дребезга и др) не менее IP54
  •  конструктивно модуль ЧПУ монтируется в ЭШ
  •  электродвигатели приводов подач и преобразователи встраиваются в ЭШ
  •  Двигатель главного движения находится в корпусе станка, на стойке
  •  Двигатели, элементы ЧПУ, преобразователи должны иметь по возможности унифицированную элементную базу. По заданию нужно выбрать элементы фирмы Сименс по каталогу

Характеристики точности САУ

  •  Дискретность – 1 мкм
  •  Точность позиционирования по всем осям 10 мкм
  •  Повторяемость 5 мкм
  •  Число одновременно управляемых координат 3
  •  Мощность главного привода 11 кВт
  •  номинальная скорость двигателя главного движения 2000 об/мин
  •  Номинальный момент на валу двигателя главного движения 50Нм

Параметры быстродействия САУ

  •  Номинальный момент двигателя подачи по координате z 27 Нм
  •  номинальная скорость двигателей подач 2000 об/мин  
  •  номинальный момент двигателей подач по координатам x и y 20 Нм
  •  Максимальная скорость вращения 6000 об/мин
  •  Диапазон частоты вращения 0-6000 об/мин
  •  Максимальная скорость подачи 15 м/мин

САУ должна обеспечивать следующие функции

  •  Управление РО по скорости и положению,
  •  Задание величины скорости аналоговое ±10 В и цифровое
  •  Корректировка величины скорости в ПУ в пределах 0-200 %
  •   ограничение рывка (ускорения);
  •    контроль рабочей зоны обработки;
  •  контроль и диагностика осей;
  •  число одновременно управляемых координат 3
  •  управление шпинделем:

  -по скорости вращения и углу поворота с указанными выше параметрами;

    -   задание величины скорости аналоговое (входной сигнал ЭПГ ±10В) и /или цифровое;

    - корректировка величины скорости с пульта управления в пределах 0-200 %;

    -  количество ступеней редукции в КС до 5;

    -  автоматический выбор ступени;

    - ориентированный останов шпинделя для автоматической смены инструмента;

  •  автоматическая смена инструмента:
  •  нарезание резьбы;
  •  синхронизация работы при многошпиндельной обработке;
  •  различные виды интерполяции в зависимости от конструкции станка и типа Из:

-  линейная;

-  круговая;

-  линейно – круговая;

-  винтовая;

-  электронный редуктор;

  •  управление Инструментом

-  использование типовых Ин – сверлильного, фрезерного,

-  в станке используется 1 инструментальный магазин, 20 инструментов;

-  коррекция инструмента по длине и диаметру в плоскости и пространстве;

-  смена инструмента;

-  загрузка/разгрузка инструмента;

-  контроль времени работы инструмента и количества изделий;

  •  измерения изделия и инструмента

-  количество измерительных щупов 1-2;

-  протоколирование результатов измерений;

-  активная коррекция инструмента и режима обработки;

  •  автоматические компенсации:

-  люфтов в кинематике станка и его узлов;

-  погрешности ходовых винтов;

-  погрешности измерительной системы;

-  тепловых деформаций и провисания шпинделя;

  •  программирование:

-  технологическое по типовым технологиям станка;

-  работа в полярных координатах;

-  ускоренная отработка УТП;

-  технологические циклы/подпрограммы;

-  измерительные циклы/подпрограммы;

-  программы прерывания УТП;

-  редактирование программ;

-  обеспечение безопасности станка и оператора, а также обслуживающего персонала;

-  диагностика работы станка с протоколированием;

-  открытая для пользователя архитектура ПО;

  •  моделирование процессов обработки:

-  траектории движения инструмента в плоскости и пространстве;

-  ускоренной отработки УТП;

-  обработки в реальном времени;

  •  коммуникация по вводу/выводу БПМО и УТП:

-  последовательный интерфейс связи с ЭВМ верхнего уровня (обычно RS 232C);

-  работа через дисковод;

-  возможность подключения различной периферии

-  управление с ГПУ и работа с дисплеем.

Для обеспечения полноценного и эффективного управления станком необходимо использование следующих компонентов в составе УЧПУ и ПУ:

  •  персональная ЭВМ (ПЭВМ) как аппаратная база УЧПУ;
  •  панель оператора УЧПУ;
  •   дисплей для вывода алфавитно–цифровой и графической информации;
  •   клавиатура УЧПУ (ПЭВМ);

Состав компонентов управления:

ГПУ со встроенными ПЭВМ, панелью оператора, дисплеем, клавиатурой и станочным ПУ;

дополнительный и/или вспомогательный (упрощенный) ПУ.

  1.  Обоснование выбора САУ и ее компонентов

4.1 Выбор УЧПУ

На основании технических требований выбираем УЧПУ модели SINUMERIK 810D. Компоненты УЧПУ :

  •  Модуль CCU 1 SINUMERIC 810D. Для внутреннего или внешнего охлаждения с 2 силовыми частями(не используются). Пользовательская память CNC 0,5 МБ, пользовательская память PLC 64 КБ. Номер заказа 6FC5447-0AA01-0AA0.
  •  Модуль блок питания для SIMATIC S7-300   6ES7307-1EA00-0AA0
  •  Модуль SIMATIC S7-300 цифровые входы SM 321 6ES7321-1BH02-0AA0
  •  Модуль SIMATIC S7-300 цифровые выходы SM 322 6ES7322-1BH01-0AA0
  •  Модуль SIMATIC S7-300 ANALOG INPUT SM 331 входы 6ES7331-7KF02-0AB0
  •  Модуль SIMATIC S7-300 SM 332 аналоговые выходы  6ES7332-5HD01-0AB0
  •  Интерфейсный модуль SIMATIC S7-300 IM 361 6ES7361-3CA01-0AA0
  •  Соединительный кабель для IM 361   6ES7368-3BB01-0AA0
  •  Штекеры для подключения модулей SM  6ES7392-1AJ00-0AA0
  •  Коммуникационный модуль CP-342-5 для подключения SIMATIC S7-300 к PROFIBUS DP      6GK7 342-5DA02-0XE0

  •  Панель оператора OP010    6FC5203-0AF00-0AA1
  •  Станочный пульт MCP 483C   6FC5203-0AF22-0AA0
  •  Промышленный компьютер SINUMERIK PCU 50566 MHZ, 128 MB RAM; 24 V DC;WINDOWS NT WORKSTATION V4.0  6FC5210-0DF20-0AA0
  •  Дисковод 3,5     6FC5235-0AA05-1AA1
  •  Монтажные разьемы для подключения PCU 6FC5248-0AF20-2AA0
  •  Программное обеспечение для 810D Toolbox 6FC5252-0AX21-0AB0
  •  Программное обеспечение для PCU HMI  6FC5253-0BX10-0AF0
  •  MPI кабель для подключения PCU   6FX2002-4EA01-1BA0

4.2 Выбор двигателей

Выбор двигателя из каталога производится по номинальному моменту и частоте вращения.

  •  Двигатели подачи по осям x иy. Выбираем двигатель 1FT6086Номинальная частота вращения 2000 об/мин, момент 27 Н*м, мощность 5,6 кВт. Исполнение IMB5, встроенный инкрементальный датчик sin/cos. Номер заказа 1FT6086-8AC71-1AG0
  •  Двигатель подачи по оси z . Выбираем двигатель  1FT6084 Номинальная частота вращения 2000 об/мин, момент 20 Н*м, мощность 3 кВт. Исполнение IMB5, встроенный инкрементальный датчик sin/cos. 1FT6084-8AC71-1AG0
  •  Двигатель главного движения. 1PH7107. Номинальная частота вращения 2000 об/мин. Максимальная 9000 об/мин. Мощность 26 кВт, инкрементальный sin/cos датчик. 1PH7107-2NG00-0BJ0


4.3 Выбор силового преобразователя

Силовой преобразователь SIMODRIVE 611. Он состоит из следующих частей

  •  Сетевой фильтр HF для модуля питания и рекуперации. 36 кВт  6SL3000-0FE23-6AA0
  •  Модуль ограничения перенапряжения для модуля сетевого питания больше 10 кВт 6SN1111-0AB00-0AA0
  •  Модуль контроля. Обеспечивает питания электроники и функции контроля для отдельной группы приводов. Необходим так как количество приводных модулей превышает мощность блока питания электроники 6SN1112-1AC01-0AA1
  •  Платы управления SIMODRIVE 611 UNIVERSAL HR  2-х осевое исполнение,.4 шт. для каждой подачи и гл движения 6SN1118-0NH01-0AA0
  •  Опционный модуль PROFIBUS DP для циклического и ациклического обмена данными. 3 шт для подач. 6SN1114-0NB00-0AA1
  •  Опционный модуль MOTION CONTROL  c PROFIBUS DP для главного движения. 6SN1114-0NB01-0AA0
  •  Силовой модуль с внутренним охлаждением. Для подачи по оси Z. 1-осевой, 25 А, 6SN1123-1AA00-0BA1
  •  Силовые модули для подачи X и Y. 1-осевые, 50 А. 6SN1123-1AA00-0DA1
  •  Силовой модуль для двигателя главного движения. 1-осевой 80 А. 6SN1123-1AA00-0DA1
  •  Модуль питания и рекуперации. 6SN1145-1BA02-0CA1
  •  ПО SIMODRIVE 611 UNIVERSAL SIMOCOM-U/611U TOOLBOX 6SN1153-0NX20-0AG0
  •  4 сигнальных кабеля для двигателей 6FX8002-2CA31-1AF0
  •  3 силовых кабеля для приводов подачи 6FX8002-5CA21-1AF0
  •  1 силовой кабель для привода главного движения 6FX8008-1BB31-1FA0


 

А также другие работы, которые могут Вас заинтересовать

7223. Расчёт электрических нагрузок электрической цепи питающей трехфазные асинхронные двигатели 276 KB
  Контрольное задание. Расчет электрических нагрузок по методу коэффициента максимума. Расчет среднесменной нагрузки. Расчёт активной среднесменной нагрузки. Расчёт реактивной среднесменной нагрузки. Расчёт средневзвешенных зна...
7224. Электропривод звена промышленного робота (поворот колонны) 1.44 MB
  Введение Современный электропривод представляет собой конструктивное единство электромеханического преобразователя энергии (двигателя), силового преобразователя и устройства управления. Он обеспечивает преобразование электрической энергии в механиче...
7225. Расчет асинхронного двигателя с фазным ротором 280 KB
  Расчет асинхронного двигателя с фазным ротором Техническое задание Спроектировать трехфазный асинхронный двигатель с фазным ротором: Р2 = 28 кВт U = 220/380 В 2р = 4 конструктивное исполнение IM1001 исполнение по способу защиты IP23 способ охла...
7226. Построить электронное устройство в соответствии с предложенной схемой и исходными данными 712.5 KB
  1. Введение Целью курсового проекта является закрепление знаний по курсу Схемотехника ЭВМ и освоение методов расчета, схемотехнического проектирования и конструирования блоков и элементов ЦВМ. При выполнении проекта необходимо построить электронно...
7227. Маркетинговые исследования рынка импортных косметических средств по уходу за кожей 260.8 KB
  Маркетинговые исследования рынка импортных косметических средств по уходу за кожей Введение Косметика в переводе с греческого - искусство украшать. Косметика зародилась одновременно с появлением человека. Ее история тесно связана с уровнем ...
7228. Выбор и расчет рациональных способов восстановления деталей на примере толкателя клапанов тракторного двигателя 370.5 KB
  Выбор и расчет рациональных способов восстановления деталей на примере толкателя клапанов тракторного двигателя Задание Необходимо выбрать оптимальный способ восстановления детали с подробным описанием операций, расчетом времени и себестоимости...
7229. Инвестиционный проект модернизации ОАО Рыбинские моторы 209 KB
  Инвестиционный проект модернизации ОАО Рыбинские моторы В данном курсовом проекте все три фазы рассмотрены в первой части. Во второй части проекта произведен расчет наиболее выгодного источника получения денежных средств для осуществления данного пр...
7230. Разработка проекта рациональной организации поточной линии на производстве 169.62 KB
  Введение. Задачей любого предприятия является повышение качества производимой продукции или услуги при минимальных затратах на производство, поэтому тема Организация поточного производства очень актуальна, в ней я рассматриваю вопросы оптимального...
7231. Конструкция и материал оптических волокон 453 KB
  Конструкция и материал оптических волокон. Оптические волокна можно разделить на следующие типы: кварцевые, кварц-полимерные и полимерные. Кварцевые оптические волокна изготавливаются из высокочистого кварцевого стекла (сердечник и светоотражающая о...