50051

Изучение петли гистерезиса и измерение параметров ферромагнетика

Лабораторная работа

Физика

Они способны сохранять намагниченность в отсутствие магнитного поля. Особенностью ферромагнетиков является сложная нелинейная зависимость между намагниченностью J и напряженностью магнитного поля H равносильно между вектором магнитной индукции В и напряженностью магнитного поля H. В действительности она является функцией напряженности поля Н и определяется как . Оно проявляется в том что при изменении намагничивающего поля Н магнитная индукция В в ферромагнетике отстает от внешнего магнитного поля Н.

Русский

2014-01-15

168.5 KB

46 чел.

Лабораторная работа № 5.22*

Изучение петли гистерезиса и измерение параметров ферромагнетика

Цель работы: наблюдение магнитного гистерезиса и экспериментальное определение параметров ферромагнитного материала.

Приборы и принадлежности: блок генератора напряжений ГН1, цифровой осциллограф PicoScope 2203, стенд с объектами исследования СЗ-ЭМ01, соединительные провода.

Краткие теоретические сведения

Ферромагнетиками называются твердые вещества, в которых наблюдается явление спонтанной намагниченности. Они способны сохранять намагниченность  в отсутствие магнитного поля.

Особенностью ферромагнетиков является сложная нелинейная зависимость между намагниченностью J и напряженностью магнитного поля H (равносильно между вектором магнитной индукции В и напряженностью магнитного поля H). Вследствие нелинейной связи между величинами  В и Н для ферромагнетиков теряет смысл введение магнитной проницаемости, как определенной постоянной величины. В действительности она является функцией напряженности поля Н и определяется как

.  (1)

Вторая особенность ферромагнетиков состоит в том, что для них зависимость В от Н неоднозначна, а определяется предысторией намагничивания ферромагнитного образца. Это явление называется магнитным гистерезисом. Оно проявляется в том, что при изменении намагничивающего поля Н, магнитная индукция В в ферромагнетике отстает от внешнего магнитного поля Н. В результате при выключении поля Н ферромагнетик остается намагниченным и магнитная индукция в нем равна Br (остаточная намагниченность). Чтобы уничтожить остаточную намагниченность в ферромагнетике необходимо наложить внешнее поле противоположного направления и величины Нс (коэрцитивная сила ферромагнетика). По величинам Br и Нс ферромагнетики делятся на магнитомягкие и магнитожесткие. Наличие гистерезиса приводит к тому, что, при периодическом изменении напряженности от +Н до –Н, значения В образуют замкнутую кривую, называемую петлей гистерезиса. Площадь петли определяет количество тепла, выделяющееся в единичном объеме за один цикл перемагничивания ферромагнетика

.      (2)

Петлю гистерезиса можно наблюдать на экране осциллографа, если на горизонтально отклоняющие пластины подать напряжение Ux, пропорциональное Н, а на вертикально отклоняющие пластины-Uy, пропорциональное В.

Для наблюдения петли гистерезиса и измерения ее параметров необходимо собрать следующую электрическую схему (рис. 2).

 

Трансформатор представляет собой замкнутый ферромагнитный сердечник, на котором размещены две обмотки: I-намагничивающая и II-измерительная. При пропускании переменного тока по обмотке I на сопротивлении R1 возникает напряжение Ux пропорциональное току I, в свою очередь напряженность поля Н также пропорциональна величине I. Следовательно напряжение Ux пропорционально величине Н, которая изменяется от +Н до –Н. Во вторичной обмотке возникает ЭДС индукции, пропорциональная скорости изменения магнитной индукции . Цепь RC выполняет роль интегрирующей ячейки, поэтому Uc=Uy~, т.е. В. Для проведения количественных измерений необходимо установить соотношения между величинами Ux и Н, между величинами Uy и В.

Рассмотрим условие, при котором начало координат находится в центре петли. Напряженность магнитного поля Н, создаваемого первичной обмоткой с числом витков N1 в ферромагнитном сердечнике, определяется как

Н=aUX, (3)

где Ux – значение напряжения в канале В. Коэффициент

, (4)

где l-длина средней линии ферромагнитного сердечника, на котором равномерно распределена первичная (намагничивающая) обмотка; R1-сопротивление, последовательно соединенное с первичной обмоткой.

Индукция магнитного поля в ферромагнетике В

B=bUY, (5)

где UY - значение напряжения в канале А.  Коэффициент

, (6)

где R и С- сопротивление и емкость интегрирующей ячейки; N2 –число витков вторичной обмотки; S-площадь поперечного сечения ферромагнитного образца (сердечника трансформатора).

Мощность, расходуемая на один цикл перемагничивания ферромагнитного образца, называемая мощностью потерь, пропорциональна площади петли гистерезиса.

Р=cSпетли, (7)

где Sпетли- площадь петли гистерезиса, измеренная в делениях шкалы осциллографа;

, (8)

где n - частота колебаний напряжения, подаваемого с генератора звуковых частот на первичную обмотку.

Порядок выполнения работы

1. Соберите схему, приведенную на рис 2.

2. Установите частоту колебаний напряжения 40 Гц, с помощью кнопки “F” на ГН1.

3. Установите рекомендуемые резистор и конденсатор RC-ячейки R5 и С4.

4. Установите максимальное напряжение ГН с помощью регулятора.

5. Запустите на компьютере программу PicoScope 6.

6. Убедитесь что на панели настройки каналов для канала А значение диапазона входного сигнал установлено «Авто».

7. Включите отображение канала B. Для этого установить на панели настройки каналов для канала В значение диапазона входного сигнал «Авто» .

8. Включите отображение по оси X входной сигнал канала A. Для этого по рабочей области программы нажать правую клавишу мыши и в контекстном меню в пункте «Ось-Х» выбрать пункт «A».

9. Для получения четкой картины на панели захвата изображения  выберать клавишу автоматической установки . Далее, на панели настройки каналов в меню параметра каналов установить для каждого канала значение разрешения 11 бит. Также установите коэффициент развертки 10 ms/div.

10. Остановите обработку данных осциллографом нажав  на панели запуска/остановки  кнопку «стоп» .

11. Нажатием левой клавиши мыши по соответствующему участку графика, определите в окне программы PicoScope значения Ux и Uy, соответствующие коэрцетивной силе ферромагнетика (Ux_c), точке, где наблюдается остаточная намагниченность (Ux_r) и точкам, соответствующим максимальному значению индукции магнитного поля (Uy_м) и максимальному значению напряженности магнитного поля (Ux_м). Запишите полученные

значения в табл. 1.

12. Рассчитайте коэффициенты a, b по формулам (4), (6) и запишите в табл. 1. Параметры трансформатора, емкости и сопротивления указаны на СЗ-ЭМ01: (S=0.64*10-4 м2, l=0,078 м , N1=1665, N2=970, R1=68 Ом, R5=4.70*105 Ом, С4 = 0,47*10-6 Ф.)

13. Пользуясь формулами (3) и (5), определить коэрцитивную силу Нс и остаточную индукцию Br. Запишите полученные значения в табл. 1.

14. По формулам (3) и (5) определите Hм и Bм. Полученные значения запишите в табл. 1.

15. Включите обработку данных осциллографом нажав на панели запуска/остановки     кнопку «пуск» .

16. Уменьшая напряжение генератора регулятором напряжения на генераторе ГН1, находящегося на лицевой части генератора левее кнопки переключения частоты, получите соответствующие им петли гистерезиса, повторите для каждого напряжения п. 12. Результаты измерений запишите в табл. 2. Необходимо получить 10 значений Ux_мi и Uyi.

17. По данным таблицы 2 постройте основную кривую намагничивания B=¦(H). По графику кривой намагничивания рассчитайте значения магнитной проницаемости  для различных интервалов DН и постройте график m=¦(Н), принимая конкретное значение mi к среднему значению Н на соответствующем интервале. Магнитная постоянная µ0 = 4π*10-7 Гн/м.

18. Сравните полученную кривую m=¦(Н) с теоретической кривой. Сделайте выводы.

Таблица 1

α

β

Ux_c

Uy_r

Ux

Uy

Br

Hc

Bм

Hм

Таблица 2

Uxi, В

Uyi, B

B_мi, Тл

H_мi, А/м

DВ, Тл

DH, А/м

m

1

2

3

4

5

6

7

8

9

10

Контрольные вопросы

  1.  Ферромагнетики и их свойства. Доменная структура ферромагнетиков.
  2.  Явление магнитного гистерезиса.
  3.  Остаточная намагниченность и коэрцитивная сила ферромагнетика.
  4.  Магнитная проницаемость. Зависимость магнитной проницаемости ферромагнетика от напряженности магнитного поля.
  5.  Мощность потерь.
  6.  Определение напряженности магнитного поля в лабораторной работе.
  7.  Определение магнитной индукции в лабораторной работе.


 

А также другие работы, которые могут Вас заинтересовать

50521. Определение настроек BIOS персонального компьютера 62 KB
  Раздел Power Параметр CPI PIC support установлен в положение Enbled разрешено. Возможные значения: Enbled Disbled. Следует оставить данный параметр без изменений Enbled поскольку данным процессором используется технология HyperTreding в противном случае можно нарушить нормальное функционирование системы либо снизить ее производительность. Параметр Microcode Updtion установлен в положение Enbled.
50523. ДОСЛІДЖЕННЯ ПРИНЦИПІВ РОБОТИ ВИМІРЮВАЛЬНИХ КАНАЛІВ ТЕМПЕРАТУРИ НА БАЗІ МІКРОПРОЦЕСОРНОГО ВИМІРЮВАЧА-РЕГУЛЯТОРА ТРМ1 869.5 KB
  Ознайомлення з методами вимірювання температури. КОРОТКІ ТЕОРЕТИЧНІ ВІДОМОСТІ Методи вимірювання температури і температурні шкали Виміряти температуру якогонебудь тіла безпосередньо тобто так як вимірюють інші фізичні величини наприклад довжину масу обєм або час не представляється можливим тому що в природі не існує еталона або зразка одиниці цієї величини. Тому визначення температури речовини роблять за допомогою спостереження за зміною фізичних властивостей іншої так званої термометричної речовини яка при зіткненні з нагрітим...
50525. Склад сыпучих материалов. Расчет деревянных конструкций поперечника 276.98 KB
  В данном курсовом проекте подобрано наиболее рациональное кон-структивное решение проектируемого здания, сконструированы и рассчитаны основные несущие и ограждающие конструкции, узловые соединения, выбраны мероприятия по защите элементов здания от гниения и возгорания. Все принятые конструктивные решения и расчетные алгоритмы соответствуют требованиям действующих нормативных документов
50526. Исследование системы управления виртуальной памятью Windows с использованием системного монитора 777 KB
  Целью работы является исследование системы управления виртуальной памятью в ОС Windows, а также оценка эффективности работы в режиме страничного обмена программ с известным распределением обращений к памяти (сортировок). Для этого используются стандартные средства администрирования...
50527. Моделирование работы программ в виртуальной памяти и исследование эффективности их выполнения 37 KB
  Задание Собирать статистику работы по каждому исследуемому алгоритму для заданного ряда процентного объема физической памяти например 2510153550759095100 и всех алгоритмов вытеснения LRU FIFO OPT FRU. Выводы Сортировка выбором: трудоёмкость N2 2 алгоритм неадаптивный показатели эффективности алгоритмов LRU и FIFO практически одинаковы аномальный алгоритм замещения FRU превосходит по эффективности LRU и FIFO реально применимые алгоритмы LRU и FIFO уступают теоретическому максимуму в 23 раза что говорит об их...
50529. Исследование входной цепи с внешнеемкостной связью антенны с контуром 135.5 KB
  Для С1 обе характеристики – наименьшие из трёх представленных. Для С2 – наибольший коэффициент передачи, а для С3 – наибольшее резонансное напряжение. Для С1 есть два небольших максимума и промежуточный минимум, для С2 – одиночный максимум, для С3 – два максимума и два минимума.