50051

Изучение петли гистерезиса и измерение параметров ферромагнетика

Лабораторная работа

Физика

Они способны сохранять намагниченность в отсутствие магнитного поля. Особенностью ферромагнетиков является сложная нелинейная зависимость между намагниченностью J и напряженностью магнитного поля H равносильно между вектором магнитной индукции В и напряженностью магнитного поля H. В действительности она является функцией напряженности поля Н и определяется как . Оно проявляется в том что при изменении намагничивающего поля Н магнитная индукция В в ферромагнетике отстает от внешнего магнитного поля Н.

Русский

2014-01-15

168.5 KB

39 чел.

Лабораторная работа № 5.22*

Изучение петли гистерезиса и измерение параметров ферромагнетика

Цель работы: наблюдение магнитного гистерезиса и экспериментальное определение параметров ферромагнитного материала.

Приборы и принадлежности: блок генератора напряжений ГН1, цифровой осциллограф PicoScope 2203, стенд с объектами исследования СЗ-ЭМ01, соединительные провода.

Краткие теоретические сведения

Ферромагнетиками называются твердые вещества, в которых наблюдается явление спонтанной намагниченности. Они способны сохранять намагниченность  в отсутствие магнитного поля.

Особенностью ферромагнетиков является сложная нелинейная зависимость между намагниченностью J и напряженностью магнитного поля H (равносильно между вектором магнитной индукции В и напряженностью магнитного поля H). Вследствие нелинейной связи между величинами  В и Н для ферромагнетиков теряет смысл введение магнитной проницаемости, как определенной постоянной величины. В действительности она является функцией напряженности поля Н и определяется как

.  (1)

Вторая особенность ферромагнетиков состоит в том, что для них зависимость В от Н неоднозначна, а определяется предысторией намагничивания ферромагнитного образца. Это явление называется магнитным гистерезисом. Оно проявляется в том, что при изменении намагничивающего поля Н, магнитная индукция В в ферромагнетике отстает от внешнего магнитного поля Н. В результате при выключении поля Н ферромагнетик остается намагниченным и магнитная индукция в нем равна Br (остаточная намагниченность). Чтобы уничтожить остаточную намагниченность в ферромагнетике необходимо наложить внешнее поле противоположного направления и величины Нс (коэрцитивная сила ферромагнетика). По величинам Br и Нс ферромагнетики делятся на магнитомягкие и магнитожесткие. Наличие гистерезиса приводит к тому, что, при периодическом изменении напряженности от +Н до –Н, значения В образуют замкнутую кривую, называемую петлей гистерезиса. Площадь петли определяет количество тепла, выделяющееся в единичном объеме за один цикл перемагничивания ферромагнетика

.      (2)

Петлю гистерезиса можно наблюдать на экране осциллографа, если на горизонтально отклоняющие пластины подать напряжение Ux, пропорциональное Н, а на вертикально отклоняющие пластины-Uy, пропорциональное В.

Для наблюдения петли гистерезиса и измерения ее параметров необходимо собрать следующую электрическую схему (рис. 2).

 

Трансформатор представляет собой замкнутый ферромагнитный сердечник, на котором размещены две обмотки: I-намагничивающая и II-измерительная. При пропускании переменного тока по обмотке I на сопротивлении R1 возникает напряжение Ux пропорциональное току I, в свою очередь напряженность поля Н также пропорциональна величине I. Следовательно напряжение Ux пропорционально величине Н, которая изменяется от +Н до –Н. Во вторичной обмотке возникает ЭДС индукции, пропорциональная скорости изменения магнитной индукции . Цепь RC выполняет роль интегрирующей ячейки, поэтому Uc=Uy~, т.е. В. Для проведения количественных измерений необходимо установить соотношения между величинами Ux и Н, между величинами Uy и В.

Рассмотрим условие, при котором начало координат находится в центре петли. Напряженность магнитного поля Н, создаваемого первичной обмоткой с числом витков N1 в ферромагнитном сердечнике, определяется как

Н=aUX, (3)

где Ux – значение напряжения в канале В. Коэффициент

, (4)

где l-длина средней линии ферромагнитного сердечника, на котором равномерно распределена первичная (намагничивающая) обмотка; R1-сопротивление, последовательно соединенное с первичной обмоткой.

Индукция магнитного поля в ферромагнетике В

B=bUY, (5)

где UY - значение напряжения в канале А.  Коэффициент

, (6)

где R и С- сопротивление и емкость интегрирующей ячейки; N2 –число витков вторичной обмотки; S-площадь поперечного сечения ферромагнитного образца (сердечника трансформатора).

Мощность, расходуемая на один цикл перемагничивания ферромагнитного образца, называемая мощностью потерь, пропорциональна площади петли гистерезиса.

Р=cSпетли, (7)

где Sпетли- площадь петли гистерезиса, измеренная в делениях шкалы осциллографа;

, (8)

где n - частота колебаний напряжения, подаваемого с генератора звуковых частот на первичную обмотку.

Порядок выполнения работы

1. Соберите схему, приведенную на рис 2.

2. Установите частоту колебаний напряжения 40 Гц, с помощью кнопки “F” на ГН1.

3. Установите рекомендуемые резистор и конденсатор RC-ячейки R5 и С4.

4. Установите максимальное напряжение ГН с помощью регулятора.

5. Запустите на компьютере программу PicoScope 6.

6. Убедитесь что на панели настройки каналов для канала А значение диапазона входного сигнал установлено «Авто».

7. Включите отображение канала B. Для этого установить на панели настройки каналов для канала В значение диапазона входного сигнал «Авто» .

8. Включите отображение по оси X входной сигнал канала A. Для этого по рабочей области программы нажать правую клавишу мыши и в контекстном меню в пункте «Ось-Х» выбрать пункт «A».

9. Для получения четкой картины на панели захвата изображения  выберать клавишу автоматической установки . Далее, на панели настройки каналов в меню параметра каналов установить для каждого канала значение разрешения 11 бит. Также установите коэффициент развертки 10 ms/div.

10. Остановите обработку данных осциллографом нажав  на панели запуска/остановки  кнопку «стоп» .

11. Нажатием левой клавиши мыши по соответствующему участку графика, определите в окне программы PicoScope значения Ux и Uy, соответствующие коэрцетивной силе ферромагнетика (Ux_c), точке, где наблюдается остаточная намагниченность (Ux_r) и точкам, соответствующим максимальному значению индукции магнитного поля (Uy_м) и максимальному значению напряженности магнитного поля (Ux_м). Запишите полученные

значения в табл. 1.

12. Рассчитайте коэффициенты a, b по формулам (4), (6) и запишите в табл. 1. Параметры трансформатора, емкости и сопротивления указаны на СЗ-ЭМ01: (S=0.64*10-4 м2, l=0,078 м , N1=1665, N2=970, R1=68 Ом, R5=4.70*105 Ом, С4 = 0,47*10-6 Ф.)

13. Пользуясь формулами (3) и (5), определить коэрцитивную силу Нс и остаточную индукцию Br. Запишите полученные значения в табл. 1.

14. По формулам (3) и (5) определите Hм и Bм. Полученные значения запишите в табл. 1.

15. Включите обработку данных осциллографом нажав на панели запуска/остановки     кнопку «пуск» .

16. Уменьшая напряжение генератора регулятором напряжения на генераторе ГН1, находящегося на лицевой части генератора левее кнопки переключения частоты, получите соответствующие им петли гистерезиса, повторите для каждого напряжения п. 12. Результаты измерений запишите в табл. 2. Необходимо получить 10 значений Ux_мi и Uyi.

17. По данным таблицы 2 постройте основную кривую намагничивания B=¦(H). По графику кривой намагничивания рассчитайте значения магнитной проницаемости  для различных интервалов DН и постройте график m=¦(Н), принимая конкретное значение mi к среднему значению Н на соответствующем интервале. Магнитная постоянная µ0 = 4π*10-7 Гн/м.

18. Сравните полученную кривую m=¦(Н) с теоретической кривой. Сделайте выводы.

Таблица 1

α

β

Ux_c

Uy_r

Ux

Uy

Br

Hc

Bм

Hм

Таблица 2

Uxi, В

Uyi, B

B_мi, Тл

H_мi, А/м

DВ, Тл

DH, А/м

m

1

2

3

4

5

6

7

8

9

10

Контрольные вопросы

  1.  Ферромагнетики и их свойства. Доменная структура ферромагнетиков.
  2.  Явление магнитного гистерезиса.
  3.  Остаточная намагниченность и коэрцитивная сила ферромагнетика.
  4.  Магнитная проницаемость. Зависимость магнитной проницаемости ферромагнетика от напряженности магнитного поля.
  5.  Мощность потерь.
  6.  Определение напряженности магнитного поля в лабораторной работе.
  7.  Определение магнитной индукции в лабораторной работе.


 

А также другие работы, которые могут Вас заинтересовать

84699. Новые тенденции в развитии современной дипломатии 17.23 KB
  Новые тенденции в развитии современной дипломатии. решение международных проблем объективно стало главной функцией дипломатии. разнообразнее стали формы многосторонней дипломатии. Глобализация и взаимозависимость мира привели также к увеличению значимости дипломатии осуществляемой на высоком и высшем уровне.
84700. Основные участники внешнеполитического процесса с учетом внутреннего законодательства различных государств. Сложившаяся система государственных органов внешних сложений Российской Федерации 19.14 KB
  Деятельность органов внешней сношений первой группы носит дипломатический характер второго типа – нет и исходит из той сферы какой занимается это представительство. Решающее слово в выработке внешней политики все равно остается за высшими органами управления главы государств и правительств. Во всех государствах с республиканским правлением высшим органом решения основных вопросов внешней политики являются высшие законодательные органы. В задачи функционального департамент информации и печати входит оповещение СМИ о прошедших или...
84701. Центральные органы внешних сношений ведущих иностранных государств 16.22 KB
  Органы внешних сношений США Конституция США принятая еще в 18 веке 17 сентября 1787 г. В конституции можно увидеть и такие уже ставшие архаичными полномочия Конгресса как ведение торговли с индейскими племенами но тут надо взять во внимание время принятия конституции США. II Конституции США говорится о полномочиях Президента. Если проанализировать существующую практику то можно прийти к заключению что главную роль в области внешних сношений в США играют два лица: Президент США и Государственный секретарь.
84702. Центральные органы внешних сношений России 16.09 KB
  В международном праве госорганы внешних сношений – это национальные государственные органы и должностные лица правомочные представлять интересы соответствующего государства и его граждан в международных отношениях. Деятельность органов внешних сношений регулируется национальным законодательством и нормами международного права содержащимися главным образом в многосторонних и двусторонних международных договорах. учреждение постоянное представительство постоянное представительство при международной межправительственной организации или...
84703. Порядок разработки, принятия и реализации решений по вопросам внешней политики в Российской Федерации 13.75 KB
  Однако разработкой практически всех документов и решений по внешней политики РФ занимается МИД России как орган координирующий всю внешнюю политику России. Основные задачи МИД: разработка основных положений стратегии внешней стратегии РФ и подготовка соответствующих предложений президенту и правительству реализация внешней политики РФ координация внешнеполитической деятельности федеральных и региональных органов исполнительной власти в целях проведения единой внешнеполитической линии РФ на международной арене обеспечение дипломатическими...
84704. Место дипломатической службы в системах государственной власти мира 14.19 KB
  В одних из ведущих стран мира например США и Великобритании дипломатическая служба имеет следующее место: она выделена в особый вид государственной службы со своими правилами набора кадров рангирования продвижения по служебной лестнице и другими собственно кадровыми характеристиками; прием на службу производится практически исключительно через открытый конкурс с обязательной сдачей претендентами специальных квалификационных экзаменов; несмотря на провозглашенный принцип...
84705. Роль МИДа в выработке внешнеполитического курса 15 KB
  Обеспечивает дипломатические и консульские сношения РФ с иностранными государствами международными организациями представительство и защиту за рубежом интересов РФ прав и интересов российских физических и юридических лиц; Для успешной деятельности МИД РФ наделен следующими правамив соответствии с Положением о нем: Аполучение от органов государственной власти Российской Федерации и ее субъектов органов местного самоуправления предприятий учреждений и организаций независимо от их организационноправовых форм и ведомственной...
84706. Правовая основа деятельности МИД РФ 11.83 KB
  Положение о МИДе 14 марта 1995 г. утвержденное указом Президента РФ; Федеральные и федеральные конституционные законы; Постановления правительства РФ; указ президента о координирующей роли МИДа; положение о посольстве и после; положение о консульском учреждении РФ; положение о постоянном представительстве РФ при международной организации; указ о порядке присвоения и сохранения дипломатических рангов и об установлении ежемесячной надбавки к должностному окладу за дипломатический ранг; положение о порядке присвоения...
84707. Положение о МИД РФ, его основные задачи и функции 15.25 KB
  По нему Министерство иностранных дел Российской Федерации является федеральным органом исполнительной власти осуществляющим функции по выработке и реализации государственной политики и нормативноправовому регулированию в сфере международных отношений Российской Федерации. Руководство деятельностью МИДа России осуществляет президент Российской Федерации. В своей деятельности МИД руководствуется Конституцией Российской Федерации; Положением о МИД России утвержденном Указом Президента Российской Федерации от 14 марта 1995 г. Основные...