50052

ЯВЛЕНИЕ САМОИНДУКЦИИ

Лабораторная работа

Физика

Цель работы: ознакомиться с явлением самоиндукции; изучить зависимость постоянной времени электрической цепи состоящей из катушки индуктивности и омического сопротивления от величины сопротивления; определить величины индуктивности катушки и магнитной проницаемости сердечника соленоида. Найдём функциональную зависимость силы тока от времени. 12 Величину t=L R называют постоянной времени цепи которая равняется времени за которое при разрядке...

Русский

2014-01-15

99 KB

22 чел.

Лабораторная работа № 5.30*

ЯВЛЕНИЕ САМОИНДУКЦИИ

Цель работы:  ознакомиться с явлением самоиндукции; изучить зависимость постоянной времени электрической цепи, состоящей из катушки индуктивности и омического сопротивления, от величины сопротивления; определить величины индуктивности катушки и магнитной проницаемости сердечника соленоида.

Приборы и принадлежности: генератор прямоугольных импульсов ГН-1, лабораторный стенд, электронный осциллограф «PicoScope 2203».

Краткие теоретические сведения

Явление самоиндукции заключается в возникновении ЭДС индукции в электрической цепи, обладающей индуктивностью, при изменении в ней электрического тока.

Электрический ток, протекая по проводникам, создаёт в окружающем пространстве магнитное поле. Магнитный поток этого поля, сцеплённый с контуром проводника Y (потокосцепление самоиндукции), вычисляется по формуле

                                                      ,                                               (1)

где N – число витков соленоида. Интегрирование  в (1) ведётся по сечению соленоида.

При слабых магнитных полях и неизменных параметрах контура, как правило, потокосцепление пропорционально силе тока:

Y=LI.  (2)

Коэффициент пропорциональности L называется индуктивностью контура. Индуктивность характеризует способность проводящего контура создавать потокосцепление собственного магнитного поля с контуром проводника. Она численно равна потокосцеплению при силе тока, равной единице:

L=Y/ I.  (3)

Индуктивность измеряется в генри: 1Гн=Вб/А. Индуктивность - скалярная величина, не зависящая от протекающего по контуру тока (в отсутствии ферромагнитных сред).

Согласно закону электромагнитной индукции, возникающая в цепи ЭДС самоиндукции, равна скорости изменения потокосцепления самоиндукции:

es = - dY/dt. (4)

Если L - величина постоянная, то из (2) получаем

 ei = - L dI/dt.  (5)

Знак минус отражает тот факт, что в проводящем контуре ЭДС самоиндукции всегда препятствует изменению электрического тока, т.е. стремится поддерживать силу тока неизменной. Самоиндукция в электромагнетизме играет ту же роль, что и инерция в механике.

Используя выражения (1) и (3), можно получить формулу для индуктивности соленоида, выбрав поверхность интегрирования, перпендикулярную осевой линии соленоида.

                                                     L=m0 mN2S/l                                                   (6)

где m0=4p10-7Гн/м – магнитная постоянная, m - магнитная проницаемость сердечника соленоида, N - общее число витков, S - площадь поперечного сечения, l- длина соленоида.

Рассмотрим переходные процессы в индуктивно-резистивной цепи, которая состоит из омического сопротивления R, индуктивности L и источника ЭДС (рис.1).

По закону Ома для замкнутой цепи сила тока:

                                                       I=(e+es)/R.                                                           (7)

Учитывая  выражение (5), получим дифференциальное уравнение первого порядка

                                            I R=e - LdI/dt.                                                        (8)

Для  решения  уравнения (8) введём начальные условия: пусть при t=0, e=0 и I=0; при t>0, e=const и I=I(t). Найдём функциональную зависимость силы тока от времени. Для этого в (8) разделим переменные и проинтегрируем обе части уравнения, расставив пределы интегрирования с учётом начальных условий.

                                                              (9)

После интегрирования

I=(e/R)[1 - exp(-Rt/L)].    (10)

Согласно (10) и закону Ома для участка цепи, напряжение на активном сопротивлении                 R U=IR=e[1-exp(-Rt/L)],                                          (11)

а на индуктивности L

                                       es=- e exp(-Rt/L)=-e exp(-t/t).                                    (12)

Величину t=L/R называют постоянной времени цепи, которая равняется времени, за которое при разрядке величина напряжения на резисторе достигает значения U=0,63 Umax, а при разрядке напряжение на резисторе уменьшается в е раз. Графики зависимости U и es от времени показаны на рис. 2 и 3.

Поскольку реальные источники e обладают внутренним сопротивлением r, то постоянная времени

   t=L/(R+r) или 1/t=R/L+r/L.       (13)

Как видно из выражения (13), зависимость 1/t от R является линейной.

Порядок выполнения работы

Для определения постоянной времени t соберите электрическую цепь, состоящую из генератора прямоугольных импульсов ГН-1, омического сопротивления R, индуктивности L и осциллографа.

1. Соберите схему, представленную на рис. 4. С помощью  переменного резистора на блоке сопротивлений установить R=100 Ом.

2. Запустите программу «PicoScope», включите цифровой осциллограф.

3. На экране осциллографа получится график зависимости U=f(τ).

4.Установите автоматический диапазон входного сигнала осциллографа (меню ).

5. На панели настройки канала установите режим АС.

6. Нажмите клавишу автоматической установки ,  на панели захвата изображения,  получите оптимальное изображение графика на экране осциллографа.

7. Установите растяжку осциллограммы по горизонтали  (меню ) равное 16 и коэффициент развертки (меню ) равное 2ms/div  (панель настройки канала). Изменяя сопротивление пронаблюдайте на экране зависимость постоянной времени от величины сопротивления R.

8. Определите постоянную времени цепи  τ изменяя сопротивление в пределах от 100 до 500 Ом с шагом 100 Ом. Для определения постоянной времени τ необходимо по графику переходного процесса, измерить значение времени, с учетом знака, в начале графика (t1) и в точке, где U=0,63 Umax (t2). Для измерения t1(t2) подведите курсор и удерживайте левую кнопку мыши в требуемых точках. Полученные значения высвечиваются на экране. Рассчитайте, как τ = t2t1, результаты измерений занесите в табл. 1 Перед измерением времени остановите обработку данных осциллографом, нажав на панели  Запуска/Остановки клавишу .

9. Для получения  следующих графиков повторно нажать на панели  Запуска/Остановки клавишу .

Таблица 1

R, Ом

10-6, c

(1/t)×106, c-1

100

200

10. Рассчитайте величины 1/t для каждого значения R.

11. Постройте график зависимости 1/t = f (R) и убедитесь, что зависимость является линейной.

12. Рассчитайте величину индуктивности L по графику зависимости 1/t=f(R), где L является величиной, обратной тангенсу угла наклона прямой ,

13. Определите магнитную проницаемость сердечника соленоида, используя формулу (6), при заданных параметров соленоида: S=0.64 см2,  l=10 мм, N=30.

Контрольные вопросы

1. Явление самоиндукции.

2. Потокосцепление при явлении самоиндукции.

3. ЭДС самоиндукции. Индуктивность.

4. Графики зависимости напряжения на резисторе и ЭДС самоиндукции от времени.

5. Постоянная времени цепи t и ее зависимость от параметров контура.

 


 

А также другие работы, которые могут Вас заинтересовать

2201. Решение задач по кузнецову 84.72 MB
  Понятия числовой последовательности и ее предела. Понятие предела функции в точке. Понятие функции, ограниченной в окрестности точки. Теорема об ограниченности функции, имеющей предел. Понятие непрерывности функции. Доказать непрерывность функции cos x. Теорема об отношении бесконечно малой функции к функции, имеющей предел, отличный от нуля. Понятие бесконечно большой функции. Теоремы о связи бесконечно больших функций с бесконечно малыми.
2202. Измерение микротвердости покрытий и тонких слоев материала 379.18 KB
  Ознакомиться с конструкцией и работой прибора ПМТ-3. Освоить методику измерения микротвердости различных объектов.
2203. Экономическая теория, ее основные показатели 2.93 MB
  Потребности общества и факторы производства. Ограниченность ресурсов. Кривая производственных возможностей. Альтернативные издержки. Закон убывающей эффективности. Развитие технологических способов производства. Исторические формы организации производства. Научно-технический потенциал. Новая техника и технология. Уровни организации экономической системы.
2204. Защита территории от затопления 541.9 KB
  Технология строительства нагорного канала механизированным способом. Закрепление откосов канала растительным грунтом. Выбор машин для вскрышных работ и разработки и транспортировки грунта. Сводный укрупненный план организации строительства. Охрана природы и окружающей среды в период проведения работ.
2205. Определение эквивалента металла объединённым методом 22.34 KB
  Определить эквивалент металла. Определить металл. Определить ошибку опыта.
2206. Управление в биомедицинских системах 831.22 KB
  Основные принципы управления. Управление по отклонению (принцип обратной связи). Характеристика компаундирования. Математическое описание систем управления. Линейные детерминированные системы. Правила преобразования структурных схем.
2207. Методические указания по экономическому обоснованию дипломных проектов на мехфаке 90.2 KB
  Методика организационно – экономической оценки основных приемов и способов производства. Определение выхода продукции в расчете на гектар земли (урожайность) и на голову животных (продуктивность). Определение чистого дохода и уровня рентабельности. Экономическая эффективность конструкторской разработки.
2208. Задачи по электротехнике и электронике 218.93 KB
  Структурные схемы электронного усилителя электронного генератора. Составление схемы двухполупериодного выпрямителя. Трехфазный асинхронный электродвигатель с короткозамкнутым ротором.
2209. Исследование фильтров на поверхностных акустических волнах 1.04 MB
  Изучить назначение, конструкции и основы технологии фильтров на поверхностных акустических волнах (ПАВ), а также их основные характеристики. Исследовать амплитудно-частотные характеристики фильтров для УПЧИ и УПЧЗ современных телевизоров, влияние температуры на их характеристики.