50063

Численное решение обыкновенных дифференциальных уравнений

Лабораторная работа

Математика и математический анализ

При выполнении данной лабораторной работы были получены теоретические и практические навыки в приближенном решении дифференциальных уравнений первого порядка с начальным условием методами Эйлера, Эйлера (уточнённый), Рунге-Кутты, Адамса, Милна. Сравнивая полученные результаты вычислений с истинным значением можно сделать вывод...

Русский

2014-01-15

957.5 KB

8 чел.

СОДЕРЖАНИЕ

[1] СОДЕРЖАНИЕ

[2]
Постановка задачи

[3]
Численное решение

[3.1] Метод Эйлера

[3.2] Уточненный метод Эйлера

[3.3] Метод Рунге-Кутты

[3.4]
Метод Адамса

[3.5] Метод Милна

[4] Програмная реализация

[4.1] Описание основных процедур и функций

[4.2]
Блок-схемы основных процедур

[4.3] Текст программы

[5]
Решение в среде Mathcad

[6]

Результаты вычислений

[7]
Вывод

[8] Кафедра: «Техническая кибернетика»

[8.0.1]  

  1.  
    Постановка задачи

Необходимо решить дифференциальное уравнение   с начальным условием y(0) = 1 методом:

  •  Эйлера,
  •  уточнённым  Эйлера,
  •  Рунге-Кутты (4-го порядка),
  •  Адамса,
  •  Милна,

на интервале [0;0,5].

Точное решение данного дифференциального уравнения представляется в следующем виде:

  1.  
    Численное решение
    1.  Метод Эйлера 

Вычисления производятся по формулам: ,  где h-шаг, f(x,y)-заданная функция; h = 0,05.

Вычисления представим в виде таблицы:

i

xi

0

0,0000

1,0000

0,0000

0,0000

1

0,0500

1,0000

-0,0526

-0,0026

2

0,1000

0,9974

-0,1144

-0,0057

3

0,1500

0,9916

-0,1881

-0,0094

4

0,2000

0,9822

-0,2784

-0,0139

5

0,2500

0,9683

-0,3921

-0,0196

6

0,3000

0,9487

-0,5415

-0,0271

7

0,3500

0,9216

-0,7493

-0,0375

8

0,4000

0,8842

-1,0654

-0,0533

9

0,4500

0,8309

-1,6253

-0,0813

10

0,5000

0,7496

-3,0058

-0,1503

Значение, вычисленное данным методом: y(0,5) = 0,7496, а точно вычисленное  y(0,5) = 0,5000.

  1.  Уточненный метод Эйлера

Вычисления производятся по формулам: 

 где

h = 0,05; x1/2 = 0,025;  y1/2 = 1;

Вычисления представим в виде таблицы:

i

xi

0

0,0000

1,0000

1

0,0500

0,9987

-0,0256

-0,0013

2

0,1000

0,9974

-0,1143

-0,0057

3

0,1500

0,9873

-0,1943

-0,0097

4

0,2000

0,9780

-0,2853

-0,0143

5

0,2500

0,9588

-0,4109

-0,0205

6

0,3000

0,9369

-0,5701

-0,0285

7

0,3500

0,9017

-0,8124

-0,0406

8

0,4000

0,8557

-1,1946

-0,0597

9

0,4500

0,7823

-2,0094

-0,1005

10

0,5000

0,6547

Значение, вычисленное данным методом: y(0,5) = 0,6547, а точно вычисленное   y(0,5) = 0,5000.

  1.  Метод Рунге-Кутты

Вычисления производятся по формулам: 

 ,где

 

h = 0,05.

Вычисления представим в виде таблицы:

xi

φ0

φ1 

φ2 

φ3

0

0,0000

1,0000

0,0000

-0,0013

-0,0013

-0,0027

-0,0013

1

0,0500

0,9987

-0,0027

-0,0042

-0,0043

-0,0059

-0,0043

2

0,1000

0,9944

-0,0059

-0,0077

-0,0078

-0,0098

-0,0078

3

0,1500

0,9867

-0,0098

-0,0120

-0,0121

-0,0145

-0,0121

4

0,2000

0,9746

-0,0145

-0,0174

-0,0175

-0,0207

-0,0175

5

0,2500

0,9571

-0,0207

-0,0244

-0,0246

-0,0291

-0,0247

6

0,3000

0,9325

-0,0291

-0,0343

-0,0347

-0,0413

-0,0347

7

0,3500

0,8977

-0,0413

-0,0496

-0,0504

-0,0618

-0,0505

8

0,4000

0,8472

-0,0618

-0,0778

-0,0804

-0,1078

-0,0810

9

0,4500

0,7662

-0,1081

-0,1609

-0,1872

-0,5832

-0,2312

10

0,5000

0,5350

-1,3804

0,1235

-0,6473

0,1255

-0,3837

Значение, вычисленное данным методом: y(0,5) = 0,535, а точно вычисленное y(0,5) = 0,5000.

  1.  
    Метод Адамса

Вычисления производятся по формулам: 

,    

где    

Вычисления представим в виде таблицы:

xi 

2

3

4

5

0

0,0000

1,0000

0,0000

-0,0027

1

0,0500

0,9987

-0,0027

-0,0005

-0,0032

-0,0002

2

0,1000

0,9944

-0,0059

-0,0007

-0,0001

-0,0039

-0,0003

-0,000034

3

0,1500

0,9867

-0,0098

-0,0009

-0,0002

-0,0048

-0,0004

-0,000216

4

0,2000

0,9746

-0,0145

-0,0014

-0,0004

-0,0062

-0,0008

-0,000518

5

0,2500

0,9571

-0,0207

-0,0022

-0,0009

-0,0083

-0,0017

-0,001735

6

0,3000

0,9325

-0,0291

-0,0039

-0,0026

-0,0122

-0,0043

-0,009350

7

0,3500

0,8979

-0,0413

-0,0082

-0,0120

-0,0204

-0,0163

-0,173723

8

0,4000

0,8478

-0,0617

-0,0245

-0,1857

-0,0449

-0,2020

9

0,4500

0,7694

-0,1065

-0,2265

-0,2713

10

0,5000

0,6169

-0,3779

Значение, вычисленное данным методом: y(0,5) = 0,6169, а точно вычисленное y(0,5) = 0,5000.

  1.  Метод Милна

Вычисления производятся по формулам:

Формула прогноза:

Формула коррекции:    

Определение начального отрезка y1, y2, y3 произведем по формуле Рунге-Кутта 4-го порядка точности.

y1=y(0,5)=0,9987,      y2=y(0,1)= 0,9944,      y3=y(0,15)= 0,9867;

  Вспомогательная таблица:

xi

yпр

y'пр

yкор

y'кор

0,0000

1,0000

0,0000

1,0000

0,0000

0,0500

0,9987

-0,0541

0,9987

-0,0541

0,1000

0,9944

-0,1181

0,9944

-0,1180

0,1500

0,9867

-0,1952

0,9867

-0,1952

0,2000

0,9746

-0,2909

0,9746

-0,2910

0,2500

0,9572

-0,4141

0,9571

-0,4142

0,3000

0,9326

-0,5809

0,9324

-0,5812

0,3500

0,8981

-0,8246

0,8977

-0,8258

0,4000

0,8482

-1,2311

0,8472

-1,2362

0,4500

0,7706

-2,1196

0,7662

-2,1624

0,5000

0,6221

-7,1915

0,5626

-14,9816

Значение, вычисленное данным методом: y(0,5) = 0,5626, а точно вычисленное y(0,5) = 0,5000.


  1.  Програмная реализация
    1.  Описание основных процедур и функций

      - Procedure Eiler(h, Xo, Xmax, Yo :real; var StringGrid_data: TStringGrid);

         Вычисляются значения точек функции, являющейся решением ОДУ, по методу Эйлера. На выходе получаются массивы чисел типа real, записанные в StringGrid_data.

     - Procedure RK4(h, Xo, Xmax, Yo :real; var StringGrid_data: TStringGrid); Вычисляются значения точек функции, являющейся решением ОДУ, по методу Рунге-Кутты 4 порядка. На выходе получаются массивы чисел типа real, записанные в StringGrid_data.

  1.  
    Блок-схемы основных процедур

Метод Эйлера      Метод Рунге-Кутты 4 порядка


Приложение 1

Текст программы

unit Main_unit;

interface

uses

 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

 Dialogs, StdCtrls, ExtCtrls, Grids, pngimage;

type

 TForm_lab6 = class(TForm)

   Image_DE: TImage;

   But_calc: TButton;

   StringGrid_data: TStringGrid;

   Edit_Xo: TEdit;

   Edit_Xmax: TEdit;

   Label_Xo: TLabel;

   Label_Xmax: TLabel;

   method_choice: TComboBox;

   Label_DE: TLabel;

   Label_method: TLabel;

   Label_Yo: TLabel;

   Edit_Yo: TEdit;

   procedure But_calcClick(Sender: TObject);

 private

   { Private declarations }

 public

   { Public declarations }

 end;

var

 Form_lab6: TForm_lab6;

implementation

{$R *.dfm}

procedure Eiler(h, Xo, Xmax, Yo :real; var StringGrid_data: TStringGrid);

var

 yi_1,y1,y2,x,y,dydx,dy : real;

 i:integer;

begin

 StringGrid_data.Visible:=true;

 StringGrid_data.Cells[0,0]:='     n  ';

 StringGrid_data.Cells[1,0]:='     x  ';

 StringGrid_data.Cells[2,0]:='     y  ';

 StringGrid_data.Cells[3,0]:='     dy/dx  ';

 StringGrid_data.Cells[4,0]:='     dy ';

 for i:= 0 to 10 do

   begin

     StringGrid_data.Cells[0,i+1]:=inttostr(i);

     StringGrid_data.Cells[1,i+1]:=FloatToStr(Xo+h*i);

   end;

 StringGrid_data.Cells[2,1]:='1';

 for i:= 2 to 11 do

   begin

     yi_1:=strtofloat(StringGrid_data.Cells[2,i-1]);

     x:= strtofloat(StringGrid_data.Cells[1,i-1]);

     y:= strtofloat(StringGrid_data.Cells[2,i-1]);

     StringGrid_data.Cells[2,i]:=floattostr(Yo+h*(1/(x-y)+1));

     y1:=strtofloat(StringGrid_data.Cells[2,i-1]);

     y2:=strtofloat(StringGrid_data.Cells[2,i]);

     dy:=y2-y1;

     StringGrid_data.Cells[4,i-1]:=floattostr(dy);

   end;

 for i:= 1 to 11 do

   begin

     y:=strtofloat(StringGrid_data.Cells[2,i]);

     x:= strtofloat(StringGrid_data.Cells[1,i]);

     StringGrid_data.Cells[3,i]:=floattostr(1/(x-y)+1);

   end;

end;

procedure RK4(h, Xo, Xmax, Yo :real; var StringGrid_data: TStringGrid);

var

 f0,f1,f2,f3, Xi,Yi : real;

 Xmas,Ymas: array [1..10] of real;

 yi_1,y1,y2,x,y,dy : real;

 i:integer;

begin

 StringGrid_data.Visible:=true;

 StringGrid_data.Cells[0,0]:='     n  ';

 StringGrid_data.Cells[1,0]:='     x  ';

 StringGrid_data.Cells[2,0]:='     y  ';

 StringGrid_data.Cells[3,0]:='     f0  ';

 StringGrid_data.Cells[4,0]:='     f1  ';

 StringGrid_data.Cells[5,0]:='     f2  ';

 StringGrid_data.Cells[6,0]:='     f3  ';

 StringGrid_data.Cells[7,0]:='     dy ';

 for i:= 0 to 10 do

   begin

     StringGrid_data.Cells[0,i+1]:=inttostr(i);

     StringGrid_data.Cells[1,i+1]:=FloatToStr(Xo+h*i);

   end;

 StringGrid_data.Cells[2,1]:=FloatToStr(Yo);

 for i := 0 to 10 do

 begin

   Xi:= StrToFloat(StringGrid_data.Cells[1,i+1]);

   Yi:= StrToFloat(StringGrid_data.Cells[2,i+1]);

   f0:= h*(1/(Xi-Yi)+1);

   f1:=h*(1/((Xi+0.5*h)-(Yi+0.5*f0))+1);

   f2:=h*(1/((Xi+0.5*h)-(Yi+0.5*f1))+1);

   f3:=h*(1/((Xi+h)-(Yi+f2))+1);

   dy:=1/6*(f0+2*f1+2*f2+f3);

   StringGrid_data.Cells[2,i+2]:=floattostr(Yi+dy);

   StringGrid_data.Cells[3,i+1]:=floattostr(f0);

   StringGrid_data.Cells[4,i+1]:=floattostr(f1);

   StringGrid_data.Cells[5,i+1]:=floattostr(f2);

   StringGrid_data.Cells[6,i+1]:=floattostr(f3);

   StringGrid_data.Cells[7,i+1]:=floattostr(dy);

 end;

end;

procedure TForm_lab6.But_calcClick(Sender: TObject);

var

 Xo, Xmax, Yo: real;

 yi_1,y1,y2,x,y,dydx,dy : real;

 i:integer;

 h : real;

begin

 Xo:=Strtofloat(Edit_Xo.Text);

 Xmax:=Strtofloat(Edit_Xmax.Text);

 h:=(Xmax-Xo)/10;

 Yo:=Strtofloat(Edit_Yo.Text);

 if method_choice.Text='Эйлера' then

   Eiler(h,Xo,Xmax,Yo,StringGrid_data)

   else

   if method_choice.Text='Рунге-Кутты' then

     RK4(h,Xo,Xmax,Yo,StringGrid_data) end; end.

  1.  
    Решение в среде Mathcad
  2.  

    Результаты вычислений

Метод

(Yi)

Xi

Метод Эйлера

Уточненный метод Эйлера

Метод Рунге-Кутта 4го порядка

Метод Адамса

Метод Милна

Точное решение

0,0000

1,0000

1,0000

1,0000

1,0000

1,0000

1,0000

0,0500

1,0000

0,9987

0,9987

0,9987

0,9987

0,9987

0,1000

0,9974

0,9974

0,9944

0,9944

0,9944

0,9944

0,1500

0,9916

0,9873

0,9867

0,9867

0,9867

0,9867

0,2000

0,9822

0,9780

0,9746

0,9746

0,9746

0,9746

0,2500

0,9683

0,9588

0,9571

0,9571

0,9571

0,9571

0,3000

0,9487

0,9369

0,9325

0,9325

0,9324

0,9325

0,3500

0,9216

0,9017

0,8977

0,8979

0,8977

0,8977

0,4000

0,8842

0,8557

0,8472

0,8478

0,8472

0,8472

0,4500

0,8309

0,7823

0,7662

0,7694

0,7662

0,7662

0,5000

0,7496

0,6547

0,5350

0,6169

0,5626

0,5000


Вывод

При выполнении данной лабораторной работы были получены теоретические и практические навыки в приближенном решении дифференциальных уравнений первого порядка с начальным условием методами Эйлера, Эйлера (уточнённый), Рунге-Кутты, Адамса, Милна. Сравнивая полученные результаты вычислений с истинным значением можно сделать вывод, что наибольшей точностью из всех рассмотренных методов для данного дифференциального уравнения обладает метод Рунге-Кутты 4-го порядка.

 


Министерство образования и науки РФ

Федеральное Государственное Бюджетное образовательное

учреждение высшего  
пр
офессионального образования

«Белгородский Государственный Технологический Университет им. В.Г. Шухова»
(БГТУ им. В.Г. Шухова)

ИИТУС

Кафедра: «Техническая кибернетика»

Лабораторная работа №6

дисциплина: «Численные методы и оптимизация»

тема:  «Численное решение обыкновенных дифференциальных

уравнений»

Вариант 1

Выполнил:
студент группы АП-21

Андрианов А.Ю.

Принял:

ст. препод. кафедры ТК
Рыбин И.А.

Белгород 2013

  1.  

Да

Нет

ачало

x0 ,y0, h, n

x[0]=Xo

y[0]=Yo

i=1

i>=n

y[i]=y[i]+h*f(x,y)

x[i]=x[i]+h

i=i+1

Конец


 

А также другие работы, которые могут Вас заинтересовать

15362. Методика проведения социометрического исследования 301 KB
  ВВЕДЕНИЕ Создание и развитие социометрической методики связано с именем известного в практической психологии человека Якобом Леви Морено. Еще в ЗОе годы он создал социометрию как удобную в практике методику для изучения эмоциональных связей в группе. Связи тако
15363. Нормирование труда как функция организации труда 170 KB
  Научно обоснованные нормы труда позволяют оценить результаты трудовой деятельности каждого работника, каждой бригады и сравнить их результаты. Только при сравнении выявляются передовики и отстающие.
15364. Нормирование труда. Принципы, методы, формы 91.5 KB
  Введение За последние годы произошли радикальные сдвиги в общественнополитической и экономической жизни страны. Курс проводимых реформ радикально преобразил социальнотрудовую сферу. В условиях растущих экономических и социальных трудностей проблемы отношен...
15365. Организация работы центра закупки вычислительной техники АВЕРС 3.44 MB
  Цель маркетинговой деятельности этих предприятий – получение определённых коммерческих результатов с помощью наиболее эффективного управления собственными ресурсами, удовлетворяя потребности заказчиков эффективнее, чем конкуренты...
15366. Основные критерии оценки предпринимательских рисков 276.5 KB
  Основные критерии оценки предпринимательских рисков Введение Предпринимательская деятельность как функция управления имеет свою историю и динамику развития. Исходя из истории развития категории предпринимательства в современных трактовках научных деятелей в с
15367. Основные понятия аудита и аудиторской деятельности 195.5 KB
  Аудит – это вид деятельности, заключающийся в сборе и оценке фактов, касающихся функционирования и положения экономического объекта (самостоятельного хозяйственного подразделения) или касающихся информации о таком положении и функционировании...
15368. Анализ развития перестрахования в России 247.5 KB
  Содержание Введение 1. Понятие перестрахования и его назначение 1.1 Сущность и теоретические основы перестрахования 1.2 Виды перестрахования 1.3 Функции перестрахования 1.4 Нормативноправовая основа перестрахования 2. Анализ развития перестрахования в России ...
15369. Повышение эффективности производства подсолнечника на примере ООО Лосево 1.28 MB
  Основы экономики производства подсолнечника 5 Народнохозяйственное значение производства подсолнечника 5 Состояние и основные тенденции развития рынка 9 подсолнечника в России Краткая характеристика ООО Лосево
15370. Понятие и виды освобождения от наказания 191.5 KB
  Проявившиеся в последнее время тенденции широкого применения к лицам, впервые совершившим преступления не только небольшой, но и средней тяжести, института освобождения от наказания, нуждается в дальнейшем изучении с целью выявления необходимости последующего изменения уголовного закона и эффективности его применения