50063

Численное решение обыкновенных дифференциальных уравнений

Лабораторная работа

Математика и математический анализ

При выполнении данной лабораторной работы были получены теоретические и практические навыки в приближенном решении дифференциальных уравнений первого порядка с начальным условием методами Эйлера, Эйлера (уточнённый), Рунге-Кутты, Адамса, Милна. Сравнивая полученные результаты вычислений с истинным значением можно сделать вывод...

Русский

2014-01-15

957.5 KB

8 чел.

СОДЕРЖАНИЕ

[1] СОДЕРЖАНИЕ

[2]
Постановка задачи

[3]
Численное решение

[3.1] Метод Эйлера

[3.2] Уточненный метод Эйлера

[3.3] Метод Рунге-Кутты

[3.4]
Метод Адамса

[3.5] Метод Милна

[4] Програмная реализация

[4.1] Описание основных процедур и функций

[4.2]
Блок-схемы основных процедур

[4.3] Текст программы

[5]
Решение в среде Mathcad

[6]

Результаты вычислений

[7]
Вывод

[8] Кафедра: «Техническая кибернетика»

[8.0.1]  

  1.  
    Постановка задачи

Необходимо решить дифференциальное уравнение   с начальным условием y(0) = 1 методом:

  •  Эйлера,
  •  уточнённым  Эйлера,
  •  Рунге-Кутты (4-го порядка),
  •  Адамса,
  •  Милна,

на интервале [0;0,5].

Точное решение данного дифференциального уравнения представляется в следующем виде:

  1.  
    Численное решение
    1.  Метод Эйлера 

Вычисления производятся по формулам: ,  где h-шаг, f(x,y)-заданная функция; h = 0,05.

Вычисления представим в виде таблицы:

i

xi

0

0,0000

1,0000

0,0000

0,0000

1

0,0500

1,0000

-0,0526

-0,0026

2

0,1000

0,9974

-0,1144

-0,0057

3

0,1500

0,9916

-0,1881

-0,0094

4

0,2000

0,9822

-0,2784

-0,0139

5

0,2500

0,9683

-0,3921

-0,0196

6

0,3000

0,9487

-0,5415

-0,0271

7

0,3500

0,9216

-0,7493

-0,0375

8

0,4000

0,8842

-1,0654

-0,0533

9

0,4500

0,8309

-1,6253

-0,0813

10

0,5000

0,7496

-3,0058

-0,1503

Значение, вычисленное данным методом: y(0,5) = 0,7496, а точно вычисленное  y(0,5) = 0,5000.

  1.  Уточненный метод Эйлера

Вычисления производятся по формулам: 

 где

h = 0,05; x1/2 = 0,025;  y1/2 = 1;

Вычисления представим в виде таблицы:

i

xi

0

0,0000

1,0000

1

0,0500

0,9987

-0,0256

-0,0013

2

0,1000

0,9974

-0,1143

-0,0057

3

0,1500

0,9873

-0,1943

-0,0097

4

0,2000

0,9780

-0,2853

-0,0143

5

0,2500

0,9588

-0,4109

-0,0205

6

0,3000

0,9369

-0,5701

-0,0285

7

0,3500

0,9017

-0,8124

-0,0406

8

0,4000

0,8557

-1,1946

-0,0597

9

0,4500

0,7823

-2,0094

-0,1005

10

0,5000

0,6547

Значение, вычисленное данным методом: y(0,5) = 0,6547, а точно вычисленное   y(0,5) = 0,5000.

  1.  Метод Рунге-Кутты

Вычисления производятся по формулам: 

 ,где

 

h = 0,05.

Вычисления представим в виде таблицы:

xi

φ0

φ1 

φ2 

φ3

0

0,0000

1,0000

0,0000

-0,0013

-0,0013

-0,0027

-0,0013

1

0,0500

0,9987

-0,0027

-0,0042

-0,0043

-0,0059

-0,0043

2

0,1000

0,9944

-0,0059

-0,0077

-0,0078

-0,0098

-0,0078

3

0,1500

0,9867

-0,0098

-0,0120

-0,0121

-0,0145

-0,0121

4

0,2000

0,9746

-0,0145

-0,0174

-0,0175

-0,0207

-0,0175

5

0,2500

0,9571

-0,0207

-0,0244

-0,0246

-0,0291

-0,0247

6

0,3000

0,9325

-0,0291

-0,0343

-0,0347

-0,0413

-0,0347

7

0,3500

0,8977

-0,0413

-0,0496

-0,0504

-0,0618

-0,0505

8

0,4000

0,8472

-0,0618

-0,0778

-0,0804

-0,1078

-0,0810

9

0,4500

0,7662

-0,1081

-0,1609

-0,1872

-0,5832

-0,2312

10

0,5000

0,5350

-1,3804

0,1235

-0,6473

0,1255

-0,3837

Значение, вычисленное данным методом: y(0,5) = 0,535, а точно вычисленное y(0,5) = 0,5000.

  1.  
    Метод Адамса

Вычисления производятся по формулам: 

,    

где    

Вычисления представим в виде таблицы:

xi 

2

3

4

5

0

0,0000

1,0000

0,0000

-0,0027

1

0,0500

0,9987

-0,0027

-0,0005

-0,0032

-0,0002

2

0,1000

0,9944

-0,0059

-0,0007

-0,0001

-0,0039

-0,0003

-0,000034

3

0,1500

0,9867

-0,0098

-0,0009

-0,0002

-0,0048

-0,0004

-0,000216

4

0,2000

0,9746

-0,0145

-0,0014

-0,0004

-0,0062

-0,0008

-0,000518

5

0,2500

0,9571

-0,0207

-0,0022

-0,0009

-0,0083

-0,0017

-0,001735

6

0,3000

0,9325

-0,0291

-0,0039

-0,0026

-0,0122

-0,0043

-0,009350

7

0,3500

0,8979

-0,0413

-0,0082

-0,0120

-0,0204

-0,0163

-0,173723

8

0,4000

0,8478

-0,0617

-0,0245

-0,1857

-0,0449

-0,2020

9

0,4500

0,7694

-0,1065

-0,2265

-0,2713

10

0,5000

0,6169

-0,3779

Значение, вычисленное данным методом: y(0,5) = 0,6169, а точно вычисленное y(0,5) = 0,5000.

  1.  Метод Милна

Вычисления производятся по формулам:

Формула прогноза:

Формула коррекции:    

Определение начального отрезка y1, y2, y3 произведем по формуле Рунге-Кутта 4-го порядка точности.

y1=y(0,5)=0,9987,      y2=y(0,1)= 0,9944,      y3=y(0,15)= 0,9867;

  Вспомогательная таблица:

xi

yпр

y'пр

yкор

y'кор

0,0000

1,0000

0,0000

1,0000

0,0000

0,0500

0,9987

-0,0541

0,9987

-0,0541

0,1000

0,9944

-0,1181

0,9944

-0,1180

0,1500

0,9867

-0,1952

0,9867

-0,1952

0,2000

0,9746

-0,2909

0,9746

-0,2910

0,2500

0,9572

-0,4141

0,9571

-0,4142

0,3000

0,9326

-0,5809

0,9324

-0,5812

0,3500

0,8981

-0,8246

0,8977

-0,8258

0,4000

0,8482

-1,2311

0,8472

-1,2362

0,4500

0,7706

-2,1196

0,7662

-2,1624

0,5000

0,6221

-7,1915

0,5626

-14,9816

Значение, вычисленное данным методом: y(0,5) = 0,5626, а точно вычисленное y(0,5) = 0,5000.


  1.  Програмная реализация
    1.  Описание основных процедур и функций

      - Procedure Eiler(h, Xo, Xmax, Yo :real; var StringGrid_data: TStringGrid);

         Вычисляются значения точек функции, являющейся решением ОДУ, по методу Эйлера. На выходе получаются массивы чисел типа real, записанные в StringGrid_data.

     - Procedure RK4(h, Xo, Xmax, Yo :real; var StringGrid_data: TStringGrid); Вычисляются значения точек функции, являющейся решением ОДУ, по методу Рунге-Кутты 4 порядка. На выходе получаются массивы чисел типа real, записанные в StringGrid_data.

  1.  
    Блок-схемы основных процедур

Метод Эйлера      Метод Рунге-Кутты 4 порядка


Приложение 1

Текст программы

unit Main_unit;

interface

uses

 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

 Dialogs, StdCtrls, ExtCtrls, Grids, pngimage;

type

 TForm_lab6 = class(TForm)

   Image_DE: TImage;

   But_calc: TButton;

   StringGrid_data: TStringGrid;

   Edit_Xo: TEdit;

   Edit_Xmax: TEdit;

   Label_Xo: TLabel;

   Label_Xmax: TLabel;

   method_choice: TComboBox;

   Label_DE: TLabel;

   Label_method: TLabel;

   Label_Yo: TLabel;

   Edit_Yo: TEdit;

   procedure But_calcClick(Sender: TObject);

 private

   { Private declarations }

 public

   { Public declarations }

 end;

var

 Form_lab6: TForm_lab6;

implementation

{$R *.dfm}

procedure Eiler(h, Xo, Xmax, Yo :real; var StringGrid_data: TStringGrid);

var

 yi_1,y1,y2,x,y,dydx,dy : real;

 i:integer;

begin

 StringGrid_data.Visible:=true;

 StringGrid_data.Cells[0,0]:='     n  ';

 StringGrid_data.Cells[1,0]:='     x  ';

 StringGrid_data.Cells[2,0]:='     y  ';

 StringGrid_data.Cells[3,0]:='     dy/dx  ';

 StringGrid_data.Cells[4,0]:='     dy ';

 for i:= 0 to 10 do

   begin

     StringGrid_data.Cells[0,i+1]:=inttostr(i);

     StringGrid_data.Cells[1,i+1]:=FloatToStr(Xo+h*i);

   end;

 StringGrid_data.Cells[2,1]:='1';

 for i:= 2 to 11 do

   begin

     yi_1:=strtofloat(StringGrid_data.Cells[2,i-1]);

     x:= strtofloat(StringGrid_data.Cells[1,i-1]);

     y:= strtofloat(StringGrid_data.Cells[2,i-1]);

     StringGrid_data.Cells[2,i]:=floattostr(Yo+h*(1/(x-y)+1));

     y1:=strtofloat(StringGrid_data.Cells[2,i-1]);

     y2:=strtofloat(StringGrid_data.Cells[2,i]);

     dy:=y2-y1;

     StringGrid_data.Cells[4,i-1]:=floattostr(dy);

   end;

 for i:= 1 to 11 do

   begin

     y:=strtofloat(StringGrid_data.Cells[2,i]);

     x:= strtofloat(StringGrid_data.Cells[1,i]);

     StringGrid_data.Cells[3,i]:=floattostr(1/(x-y)+1);

   end;

end;

procedure RK4(h, Xo, Xmax, Yo :real; var StringGrid_data: TStringGrid);

var

 f0,f1,f2,f3, Xi,Yi : real;

 Xmas,Ymas: array [1..10] of real;

 yi_1,y1,y2,x,y,dy : real;

 i:integer;

begin

 StringGrid_data.Visible:=true;

 StringGrid_data.Cells[0,0]:='     n  ';

 StringGrid_data.Cells[1,0]:='     x  ';

 StringGrid_data.Cells[2,0]:='     y  ';

 StringGrid_data.Cells[3,0]:='     f0  ';

 StringGrid_data.Cells[4,0]:='     f1  ';

 StringGrid_data.Cells[5,0]:='     f2  ';

 StringGrid_data.Cells[6,0]:='     f3  ';

 StringGrid_data.Cells[7,0]:='     dy ';

 for i:= 0 to 10 do

   begin

     StringGrid_data.Cells[0,i+1]:=inttostr(i);

     StringGrid_data.Cells[1,i+1]:=FloatToStr(Xo+h*i);

   end;

 StringGrid_data.Cells[2,1]:=FloatToStr(Yo);

 for i := 0 to 10 do

 begin

   Xi:= StrToFloat(StringGrid_data.Cells[1,i+1]);

   Yi:= StrToFloat(StringGrid_data.Cells[2,i+1]);

   f0:= h*(1/(Xi-Yi)+1);

   f1:=h*(1/((Xi+0.5*h)-(Yi+0.5*f0))+1);

   f2:=h*(1/((Xi+0.5*h)-(Yi+0.5*f1))+1);

   f3:=h*(1/((Xi+h)-(Yi+f2))+1);

   dy:=1/6*(f0+2*f1+2*f2+f3);

   StringGrid_data.Cells[2,i+2]:=floattostr(Yi+dy);

   StringGrid_data.Cells[3,i+1]:=floattostr(f0);

   StringGrid_data.Cells[4,i+1]:=floattostr(f1);

   StringGrid_data.Cells[5,i+1]:=floattostr(f2);

   StringGrid_data.Cells[6,i+1]:=floattostr(f3);

   StringGrid_data.Cells[7,i+1]:=floattostr(dy);

 end;

end;

procedure TForm_lab6.But_calcClick(Sender: TObject);

var

 Xo, Xmax, Yo: real;

 yi_1,y1,y2,x,y,dydx,dy : real;

 i:integer;

 h : real;

begin

 Xo:=Strtofloat(Edit_Xo.Text);

 Xmax:=Strtofloat(Edit_Xmax.Text);

 h:=(Xmax-Xo)/10;

 Yo:=Strtofloat(Edit_Yo.Text);

 if method_choice.Text='Эйлера' then

   Eiler(h,Xo,Xmax,Yo,StringGrid_data)

   else

   if method_choice.Text='Рунге-Кутты' then

     RK4(h,Xo,Xmax,Yo,StringGrid_data) end; end.

  1.  
    Решение в среде Mathcad
  2.  

    Результаты вычислений

Метод

(Yi)

Xi

Метод Эйлера

Уточненный метод Эйлера

Метод Рунге-Кутта 4го порядка

Метод Адамса

Метод Милна

Точное решение

0,0000

1,0000

1,0000

1,0000

1,0000

1,0000

1,0000

0,0500

1,0000

0,9987

0,9987

0,9987

0,9987

0,9987

0,1000

0,9974

0,9974

0,9944

0,9944

0,9944

0,9944

0,1500

0,9916

0,9873

0,9867

0,9867

0,9867

0,9867

0,2000

0,9822

0,9780

0,9746

0,9746

0,9746

0,9746

0,2500

0,9683

0,9588

0,9571

0,9571

0,9571

0,9571

0,3000

0,9487

0,9369

0,9325

0,9325

0,9324

0,9325

0,3500

0,9216

0,9017

0,8977

0,8979

0,8977

0,8977

0,4000

0,8842

0,8557

0,8472

0,8478

0,8472

0,8472

0,4500

0,8309

0,7823

0,7662

0,7694

0,7662

0,7662

0,5000

0,7496

0,6547

0,5350

0,6169

0,5626

0,5000


Вывод

При выполнении данной лабораторной работы были получены теоретические и практические навыки в приближенном решении дифференциальных уравнений первого порядка с начальным условием методами Эйлера, Эйлера (уточнённый), Рунге-Кутты, Адамса, Милна. Сравнивая полученные результаты вычислений с истинным значением можно сделать вывод, что наибольшей точностью из всех рассмотренных методов для данного дифференциального уравнения обладает метод Рунге-Кутты 4-го порядка.

 


Министерство образования и науки РФ

Федеральное Государственное Бюджетное образовательное

учреждение высшего  
пр
офессионального образования

«Белгородский Государственный Технологический Университет им. В.Г. Шухова»
(БГТУ им. В.Г. Шухова)

ИИТУС

Кафедра: «Техническая кибернетика»

Лабораторная работа №6

дисциплина: «Численные методы и оптимизация»

тема:  «Численное решение обыкновенных дифференциальных

уравнений»

Вариант 1

Выполнил:
студент группы АП-21

Андрианов А.Ю.

Принял:

ст. препод. кафедры ТК
Рыбин И.А.

Белгород 2013

  1.  

Да

Нет

ачало

x0 ,y0, h, n

x[0]=Xo

y[0]=Yo

i=1

i>=n

y[i]=y[i]+h*f(x,y)

x[i]=x[i]+h

i=i+1

Конец


 

А также другие работы, которые могут Вас заинтересовать

83697. Деньги и цена. Денежное обращение и его законы 238.5 KB
  Деньги это неотъемлемая и существенная часть финансовой системы каждой страны. Называются ли они долларами, рублями, гривнами, фунтами или франками, деньги служат средством оплаты, средством сохранения стоимости и единицей счёта во всех экономических системах.
83698. Проектирование одноэтажного жилого коттеджа «Дивный край» 708.98 KB
  Верхняя плоскость фундамента на которой располагаются надземные части здания называется поверхностью фундамента или обрезом а нижняя его плоскость соприкасающаяся с основанием подошвой фундамента. Особенности ленточного фундамента Если рассматривать основные особенности ленточного фундамента то в первую...
83699. Полевой контроль состояния сейсморазведочных работ 2.86 MB
  В административном отношении площадь исследований находится на территории Муслюмовского района Республики Татарстан. Объем полевых сейсморазведочных работ по ПВ составит 50,0 кв. км. В качестве регистрирующей аппаратуры будет использоваться телеметрическая система сбора сейсмической...
83700. ПРОЕКТИРОВАНИЕ БД СПОРТИВНОЙ ШКОЛЫ 2.28 MB
  Целью данной курсовой работы является рассмотрение теории и создания на практике базы данных в продукте корпорации Microsoft для управления базами данных Microsoft Access на тему: Проектирование БД спортивной школы. Система Access — это набор инструментов конечного пользователя для управления базами данных.
83701. Рекомендации по оптимизации системы подбора и подготовки персонала в гостинице «Космос» 162.5 KB
  Комплектование штатов является одним из ключевых элементов работы любой организации, так как от качества отобранных кадров зависит эффективность работы организации и использование всех остальных ресурсов. Поэтому ошибки в подборе кадров могут дорого обойтись организации, а подбор хороших кадров...
83702. Определение текущего рыночного спроса и прогнозирование будущего спроса на примере отеля 90.92 KB
  Когда компания находит привлекательный рынок, она должна тщательно оценить его размер и потенциальные возможности. Чтобы разработать действенную маркетинговую стратегию, контролировать эффективность ее реализации, маркетологам стоит научиться оценивать текущий спрос и прогнозировать его изменения.
83705. Разработка приложения для предметной области «Сбор сведений о писателях и их литературных произведениях» 252.8 KB
  Практическая часть работы разделена на следующие этапы: построение логической модели базы данных; описание таблиц и построение физической модели базы данных; разработка базы данных в XML и разработка клиентской части в среде программирования...