50063

Численное решение обыкновенных дифференциальных уравнений

Лабораторная работа

Математика и математический анализ

При выполнении данной лабораторной работы были получены теоретические и практические навыки в приближенном решении дифференциальных уравнений первого порядка с начальным условием методами Эйлера, Эйлера (уточнённый), Рунге-Кутты, Адамса, Милна. Сравнивая полученные результаты вычислений с истинным значением можно сделать вывод...

Русский

2014-01-15

957.5 KB

8 чел.

СОДЕРЖАНИЕ

[1] СОДЕРЖАНИЕ

[2]
Постановка задачи

[3]
Численное решение

[3.1] Метод Эйлера

[3.2] Уточненный метод Эйлера

[3.3] Метод Рунге-Кутты

[3.4]
Метод Адамса

[3.5] Метод Милна

[4] Програмная реализация

[4.1] Описание основных процедур и функций

[4.2]
Блок-схемы основных процедур

[4.3] Текст программы

[5]
Решение в среде Mathcad

[6]

Результаты вычислений

[7]
Вывод

[8] Кафедра: «Техническая кибернетика»

[8.0.1]  

  1.  
    Постановка задачи

Необходимо решить дифференциальное уравнение   с начальным условием y(0) = 1 методом:

  •  Эйлера,
  •  уточнённым  Эйлера,
  •  Рунге-Кутты (4-го порядка),
  •  Адамса,
  •  Милна,

на интервале [0;0,5].

Точное решение данного дифференциального уравнения представляется в следующем виде:

  1.  
    Численное решение
    1.  Метод Эйлера 

Вычисления производятся по формулам: ,  где h-шаг, f(x,y)-заданная функция; h = 0,05.

Вычисления представим в виде таблицы:

i

xi

0

0,0000

1,0000

0,0000

0,0000

1

0,0500

1,0000

-0,0526

-0,0026

2

0,1000

0,9974

-0,1144

-0,0057

3

0,1500

0,9916

-0,1881

-0,0094

4

0,2000

0,9822

-0,2784

-0,0139

5

0,2500

0,9683

-0,3921

-0,0196

6

0,3000

0,9487

-0,5415

-0,0271

7

0,3500

0,9216

-0,7493

-0,0375

8

0,4000

0,8842

-1,0654

-0,0533

9

0,4500

0,8309

-1,6253

-0,0813

10

0,5000

0,7496

-3,0058

-0,1503

Значение, вычисленное данным методом: y(0,5) = 0,7496, а точно вычисленное  y(0,5) = 0,5000.

  1.  Уточненный метод Эйлера

Вычисления производятся по формулам: 

 где

h = 0,05; x1/2 = 0,025;  y1/2 = 1;

Вычисления представим в виде таблицы:

i

xi

0

0,0000

1,0000

1

0,0500

0,9987

-0,0256

-0,0013

2

0,1000

0,9974

-0,1143

-0,0057

3

0,1500

0,9873

-0,1943

-0,0097

4

0,2000

0,9780

-0,2853

-0,0143

5

0,2500

0,9588

-0,4109

-0,0205

6

0,3000

0,9369

-0,5701

-0,0285

7

0,3500

0,9017

-0,8124

-0,0406

8

0,4000

0,8557

-1,1946

-0,0597

9

0,4500

0,7823

-2,0094

-0,1005

10

0,5000

0,6547

Значение, вычисленное данным методом: y(0,5) = 0,6547, а точно вычисленное   y(0,5) = 0,5000.

  1.  Метод Рунге-Кутты

Вычисления производятся по формулам: 

 ,где

 

h = 0,05.

Вычисления представим в виде таблицы:

xi

φ0

φ1 

φ2 

φ3

0

0,0000

1,0000

0,0000

-0,0013

-0,0013

-0,0027

-0,0013

1

0,0500

0,9987

-0,0027

-0,0042

-0,0043

-0,0059

-0,0043

2

0,1000

0,9944

-0,0059

-0,0077

-0,0078

-0,0098

-0,0078

3

0,1500

0,9867

-0,0098

-0,0120

-0,0121

-0,0145

-0,0121

4

0,2000

0,9746

-0,0145

-0,0174

-0,0175

-0,0207

-0,0175

5

0,2500

0,9571

-0,0207

-0,0244

-0,0246

-0,0291

-0,0247

6

0,3000

0,9325

-0,0291

-0,0343

-0,0347

-0,0413

-0,0347

7

0,3500

0,8977

-0,0413

-0,0496

-0,0504

-0,0618

-0,0505

8

0,4000

0,8472

-0,0618

-0,0778

-0,0804

-0,1078

-0,0810

9

0,4500

0,7662

-0,1081

-0,1609

-0,1872

-0,5832

-0,2312

10

0,5000

0,5350

-1,3804

0,1235

-0,6473

0,1255

-0,3837

Значение, вычисленное данным методом: y(0,5) = 0,535, а точно вычисленное y(0,5) = 0,5000.

  1.  
    Метод Адамса

Вычисления производятся по формулам: 

,    

где    

Вычисления представим в виде таблицы:

xi 

2

3

4

5

0

0,0000

1,0000

0,0000

-0,0027

1

0,0500

0,9987

-0,0027

-0,0005

-0,0032

-0,0002

2

0,1000

0,9944

-0,0059

-0,0007

-0,0001

-0,0039

-0,0003

-0,000034

3

0,1500

0,9867

-0,0098

-0,0009

-0,0002

-0,0048

-0,0004

-0,000216

4

0,2000

0,9746

-0,0145

-0,0014

-0,0004

-0,0062

-0,0008

-0,000518

5

0,2500

0,9571

-0,0207

-0,0022

-0,0009

-0,0083

-0,0017

-0,001735

6

0,3000

0,9325

-0,0291

-0,0039

-0,0026

-0,0122

-0,0043

-0,009350

7

0,3500

0,8979

-0,0413

-0,0082

-0,0120

-0,0204

-0,0163

-0,173723

8

0,4000

0,8478

-0,0617

-0,0245

-0,1857

-0,0449

-0,2020

9

0,4500

0,7694

-0,1065

-0,2265

-0,2713

10

0,5000

0,6169

-0,3779

Значение, вычисленное данным методом: y(0,5) = 0,6169, а точно вычисленное y(0,5) = 0,5000.

  1.  Метод Милна

Вычисления производятся по формулам:

Формула прогноза:

Формула коррекции:    

Определение начального отрезка y1, y2, y3 произведем по формуле Рунге-Кутта 4-го порядка точности.

y1=y(0,5)=0,9987,      y2=y(0,1)= 0,9944,      y3=y(0,15)= 0,9867;

  Вспомогательная таблица:

xi

yпр

y'пр

yкор

y'кор

0,0000

1,0000

0,0000

1,0000

0,0000

0,0500

0,9987

-0,0541

0,9987

-0,0541

0,1000

0,9944

-0,1181

0,9944

-0,1180

0,1500

0,9867

-0,1952

0,9867

-0,1952

0,2000

0,9746

-0,2909

0,9746

-0,2910

0,2500

0,9572

-0,4141

0,9571

-0,4142

0,3000

0,9326

-0,5809

0,9324

-0,5812

0,3500

0,8981

-0,8246

0,8977

-0,8258

0,4000

0,8482

-1,2311

0,8472

-1,2362

0,4500

0,7706

-2,1196

0,7662

-2,1624

0,5000

0,6221

-7,1915

0,5626

-14,9816

Значение, вычисленное данным методом: y(0,5) = 0,5626, а точно вычисленное y(0,5) = 0,5000.


  1.  Програмная реализация
    1.  Описание основных процедур и функций

      - Procedure Eiler(h, Xo, Xmax, Yo :real; var StringGrid_data: TStringGrid);

         Вычисляются значения точек функции, являющейся решением ОДУ, по методу Эйлера. На выходе получаются массивы чисел типа real, записанные в StringGrid_data.

     - Procedure RK4(h, Xo, Xmax, Yo :real; var StringGrid_data: TStringGrid); Вычисляются значения точек функции, являющейся решением ОДУ, по методу Рунге-Кутты 4 порядка. На выходе получаются массивы чисел типа real, записанные в StringGrid_data.

  1.  
    Блок-схемы основных процедур

Метод Эйлера      Метод Рунге-Кутты 4 порядка


Приложение 1

Текст программы

unit Main_unit;

interface

uses

 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

 Dialogs, StdCtrls, ExtCtrls, Grids, pngimage;

type

 TForm_lab6 = class(TForm)

   Image_DE: TImage;

   But_calc: TButton;

   StringGrid_data: TStringGrid;

   Edit_Xo: TEdit;

   Edit_Xmax: TEdit;

   Label_Xo: TLabel;

   Label_Xmax: TLabel;

   method_choice: TComboBox;

   Label_DE: TLabel;

   Label_method: TLabel;

   Label_Yo: TLabel;

   Edit_Yo: TEdit;

   procedure But_calcClick(Sender: TObject);

 private

   { Private declarations }

 public

   { Public declarations }

 end;

var

 Form_lab6: TForm_lab6;

implementation

{$R *.dfm}

procedure Eiler(h, Xo, Xmax, Yo :real; var StringGrid_data: TStringGrid);

var

 yi_1,y1,y2,x,y,dydx,dy : real;

 i:integer;

begin

 StringGrid_data.Visible:=true;

 StringGrid_data.Cells[0,0]:='     n  ';

 StringGrid_data.Cells[1,0]:='     x  ';

 StringGrid_data.Cells[2,0]:='     y  ';

 StringGrid_data.Cells[3,0]:='     dy/dx  ';

 StringGrid_data.Cells[4,0]:='     dy ';

 for i:= 0 to 10 do

   begin

     StringGrid_data.Cells[0,i+1]:=inttostr(i);

     StringGrid_data.Cells[1,i+1]:=FloatToStr(Xo+h*i);

   end;

 StringGrid_data.Cells[2,1]:='1';

 for i:= 2 to 11 do

   begin

     yi_1:=strtofloat(StringGrid_data.Cells[2,i-1]);

     x:= strtofloat(StringGrid_data.Cells[1,i-1]);

     y:= strtofloat(StringGrid_data.Cells[2,i-1]);

     StringGrid_data.Cells[2,i]:=floattostr(Yo+h*(1/(x-y)+1));

     y1:=strtofloat(StringGrid_data.Cells[2,i-1]);

     y2:=strtofloat(StringGrid_data.Cells[2,i]);

     dy:=y2-y1;

     StringGrid_data.Cells[4,i-1]:=floattostr(dy);

   end;

 for i:= 1 to 11 do

   begin

     y:=strtofloat(StringGrid_data.Cells[2,i]);

     x:= strtofloat(StringGrid_data.Cells[1,i]);

     StringGrid_data.Cells[3,i]:=floattostr(1/(x-y)+1);

   end;

end;

procedure RK4(h, Xo, Xmax, Yo :real; var StringGrid_data: TStringGrid);

var

 f0,f1,f2,f3, Xi,Yi : real;

 Xmas,Ymas: array [1..10] of real;

 yi_1,y1,y2,x,y,dy : real;

 i:integer;

begin

 StringGrid_data.Visible:=true;

 StringGrid_data.Cells[0,0]:='     n  ';

 StringGrid_data.Cells[1,0]:='     x  ';

 StringGrid_data.Cells[2,0]:='     y  ';

 StringGrid_data.Cells[3,0]:='     f0  ';

 StringGrid_data.Cells[4,0]:='     f1  ';

 StringGrid_data.Cells[5,0]:='     f2  ';

 StringGrid_data.Cells[6,0]:='     f3  ';

 StringGrid_data.Cells[7,0]:='     dy ';

 for i:= 0 to 10 do

   begin

     StringGrid_data.Cells[0,i+1]:=inttostr(i);

     StringGrid_data.Cells[1,i+1]:=FloatToStr(Xo+h*i);

   end;

 StringGrid_data.Cells[2,1]:=FloatToStr(Yo);

 for i := 0 to 10 do

 begin

   Xi:= StrToFloat(StringGrid_data.Cells[1,i+1]);

   Yi:= StrToFloat(StringGrid_data.Cells[2,i+1]);

   f0:= h*(1/(Xi-Yi)+1);

   f1:=h*(1/((Xi+0.5*h)-(Yi+0.5*f0))+1);

   f2:=h*(1/((Xi+0.5*h)-(Yi+0.5*f1))+1);

   f3:=h*(1/((Xi+h)-(Yi+f2))+1);

   dy:=1/6*(f0+2*f1+2*f2+f3);

   StringGrid_data.Cells[2,i+2]:=floattostr(Yi+dy);

   StringGrid_data.Cells[3,i+1]:=floattostr(f0);

   StringGrid_data.Cells[4,i+1]:=floattostr(f1);

   StringGrid_data.Cells[5,i+1]:=floattostr(f2);

   StringGrid_data.Cells[6,i+1]:=floattostr(f3);

   StringGrid_data.Cells[7,i+1]:=floattostr(dy);

 end;

end;

procedure TForm_lab6.But_calcClick(Sender: TObject);

var

 Xo, Xmax, Yo: real;

 yi_1,y1,y2,x,y,dydx,dy : real;

 i:integer;

 h : real;

begin

 Xo:=Strtofloat(Edit_Xo.Text);

 Xmax:=Strtofloat(Edit_Xmax.Text);

 h:=(Xmax-Xo)/10;

 Yo:=Strtofloat(Edit_Yo.Text);

 if method_choice.Text='Эйлера' then

   Eiler(h,Xo,Xmax,Yo,StringGrid_data)

   else

   if method_choice.Text='Рунге-Кутты' then

     RK4(h,Xo,Xmax,Yo,StringGrid_data) end; end.

  1.  
    Решение в среде Mathcad
  2.  

    Результаты вычислений

Метод

(Yi)

Xi

Метод Эйлера

Уточненный метод Эйлера

Метод Рунге-Кутта 4го порядка

Метод Адамса

Метод Милна

Точное решение

0,0000

1,0000

1,0000

1,0000

1,0000

1,0000

1,0000

0,0500

1,0000

0,9987

0,9987

0,9987

0,9987

0,9987

0,1000

0,9974

0,9974

0,9944

0,9944

0,9944

0,9944

0,1500

0,9916

0,9873

0,9867

0,9867

0,9867

0,9867

0,2000

0,9822

0,9780

0,9746

0,9746

0,9746

0,9746

0,2500

0,9683

0,9588

0,9571

0,9571

0,9571

0,9571

0,3000

0,9487

0,9369

0,9325

0,9325

0,9324

0,9325

0,3500

0,9216

0,9017

0,8977

0,8979

0,8977

0,8977

0,4000

0,8842

0,8557

0,8472

0,8478

0,8472

0,8472

0,4500

0,8309

0,7823

0,7662

0,7694

0,7662

0,7662

0,5000

0,7496

0,6547

0,5350

0,6169

0,5626

0,5000


Вывод

При выполнении данной лабораторной работы были получены теоретические и практические навыки в приближенном решении дифференциальных уравнений первого порядка с начальным условием методами Эйлера, Эйлера (уточнённый), Рунге-Кутты, Адамса, Милна. Сравнивая полученные результаты вычислений с истинным значением можно сделать вывод, что наибольшей точностью из всех рассмотренных методов для данного дифференциального уравнения обладает метод Рунге-Кутты 4-го порядка.

 


Министерство образования и науки РФ

Федеральное Государственное Бюджетное образовательное

учреждение высшего  
пр
офессионального образования

«Белгородский Государственный Технологический Университет им. В.Г. Шухова»
(БГТУ им. В.Г. Шухова)

ИИТУС

Кафедра: «Техническая кибернетика»

Лабораторная работа №6

дисциплина: «Численные методы и оптимизация»

тема:  «Численное решение обыкновенных дифференциальных

уравнений»

Вариант 1

Выполнил:
студент группы АП-21

Андрианов А.Ю.

Принял:

ст. препод. кафедры ТК
Рыбин И.А.

Белгород 2013

  1.  

Да

Нет

ачало

x0 ,y0, h, n

x[0]=Xo

y[0]=Yo

i=1

i>=n

y[i]=y[i]+h*f(x,y)

x[i]=x[i]+h

i=i+1

Конец


 

А также другие работы, которые могут Вас заинтересовать

54709. Формування інноваційної освітньої культури 41 KB
  Отже актуальним є визначення та подолання суперечності між оновленням парадигми сучасної освіти переходом на новий тип гуманістичноінноваційної освіти який передбачає інноваційну діяльність всіх учасників навчальновиховного процесу і неготовністю значної частини вчителів до відповідних змін. Важливо визначити роль інноваційної діяльності в системі науковометодичної роботи вчителя і висвітлити процес формування інноваційної освітньої культури педагога на різних етапах навчальновиховного процесу. Інноваційна діяльність в системі...
54710. ДОПРОФІЛЬНА ОСВІТА В ОСНОВНІЙ ШКОЛІ – ЗАПОРУКА УСПІШНОСТІ ДІТЕЙ СТАРШОЇ ШКОЛИ 125 KB
  Допрофільна та профільна освіта учнів загальноосвітньої школи представляє собою органічну частину системи виховання молоді її підготовки до самостійного трудового життя. Професійна орієнтація є науково практичною системою підготовки учнів до вільного та свідомого вибору професії. Професійна інформація необхідна для учнів та передбачає засвоєння учнями конкретною сукупністю знань про соціальноекономічні та психофізичні умови правильного вибору професії. Допрофільне навчання засіб диференціації та індивідуалізації навчання коли за...
54711. Урок-круглий стіл «Освіта в Україні, Великобританії і США» 56 KB
  Schooling in Ukrine P1. s rule schooling in Ukrine begings t the ge of 6. The Ukrinin school system is orgnised into four levels: primry secondry higher nd postsecondry eduction Generl secondry eduction is compulsory. Primry nd secondry school hs three stges: primry bsic nd senior.
54713. Производственная функция. Совокупный, средний, предельный продукты 37.32 KB
  Производство есть процесс преобразования производственных ресурсов в готовую продукцию. Задача фирмы – наиболее эффективно использовать ресурсы, получить от них наибольшую отдачу
54714. Урок истории любви Отелло и Дездемон 39.5 KB
  Но сейчас в нашей школе иначе У доски Дездемона молчит. Всё ждал когда же выучит хоть интеграл И вновь держу кулак я наготове: Соседка справа вновь к уроку не готова И меры жёсткие пора уже принять: Всех кавалеров снова разогнать Чтоб Дездемоне двоек больше не видать Дездемона: Шагая поступью довольно смелой Явился в школу одноклассник мой Отелло. Отелло: Ах Дездемона а по свойски Дуся Второй уж год с тобой учусь я. От нежелания учиться все страдания Отелло: Одни наряды на уме И платье сшитое по моде под питона Так...
54717. Спорт у Великій Британії 53 KB
  Boys and girls, we are learning the topic “Sport”. Let`s repeat the words about sport. Have a look at the blackboard. - There are two main groups of sport. What are they? -Name winter sports. (skiing, skating, snowboarding, ice-hockey) - Name summer sports. (rugby, cricket, football, basketball, volley-ball etc.) - Have a look at the picture and say, what sport is it and is it winter or summer sport. - A good job! Thank you!