50070

Изучение сложения колебаний

Лабораторная работа

Физика

Изучение сложения колебаний Цель: экспериментально исследовать явления происходящие при сложении колебаний. Сложение сонаправленных колебаний Рассмотрим два гармонических колебания совершаемые в одном направлении. Как видно из рисунка амплитуда результирующего колебания может быть легко найдена по теореме косинусов 1 а начальная фаза определяется соотношением 2 Картина колебаний является неизменной если их амплитуда не изменяется со временем. Из 1 видно что это возможно только в случае если частоты складываемых...

Русский

2014-01-15

145 KB

2 чел.

Лабораторная работа № 6.24*

Изучение сложениЯ колебаний

Цель: экспериментально исследовать явления, происходящие при сложении колебаний.

Приборы и принадлежности: блок генератора напряжений ГН1, блок амперметра-вольтметра АВ1, функциональный генератор АНР-1002, стенд с объектами исследования С3-ЭМ01, цифровой осциллограф  PicoScope 2203, соединительные провода.

Краткие теоретические сведения

1. Сложение сонаправленных колебаний

Рассмотрим два гармонических колебания, совершаемые в одном направлении.

.

Для вычисления амплитуды и фазы результирующего колебания применяется метод векторных диаграмм. Сущность метода заключается в том, что каждому колебанию сопоставляется вектор, модуль которого пропорционален амплитуде колебания, а направление будет отличаться от некоторого, наперед заданного, на угол равный фазе колебания. Данное правило проиллюстрировано на рис. 1. Колебаниям Х1 и Х2  соответствуют вектора   и . Результирующему колебанию соответствует вектор . Как видно из рисунка амплитуда результирующего колебания может быть легко найдена по теореме косинусов

 (1)

а начальная фаза определяется соотношением

  (2)

Картина колебаний  является неизменной, если их амплитуда не изменяется со временем. Из (1)  видно, что это возможно только в случае, если частоты складываемых колебаний w1 и w2 одинаковы.

2. Биения

Биениями называются колебания, получающиеся при сложении двух сонаправленных колебаний с близкими частотами, такими, что Dw = w2-w1<<w1, w2. В этом случае амплитуда результирующих колебаний является медленно меняющейся периодической функцией времени. Типичная картина биений приведена на рис. 2.  

Для простоты рассмотрим сложение  двух колебаний с равными амплитудами  А1 = А2 = А0 и одинаковыми начальными фазами . В соответствии с (1) амплитуда результирующего колебания (рекомендуется самостоятельно проделать преобразования)

.                                              (3)

В последнем выражении поставлен модуль, так как амплитуда по своему смыслу не может быть отрицательной. Из (3) следует, что амплитуда колебаний будет меняться от минимального значения до максимального (в общем случае от | А1 - А2| до А1 + А2) с частотой, называемой частотой биений.

   (4)

3. Сложение взаимно перпендикулярных колебаний

Рассмотрим движение точки, участвующей в двух взаимно перпендикулярных колебаниях, происходящих вдоль осей X и Y :

.  (5)

где  -  фаза колебаний

Перепишем уравнения в другом виде

.  (6)

Заменив во втором уравнении cos j  на , а sinj на , получим уравнение

.    (7)

В случае, когда складываются колебания с одинаковой частотой и разность их фаз остается постоянной, последнее уравнение описывает эллипс, оси которого произвольно ориентированы относительно осей X и Y. В общем случае, когда частоты складываемых колебаний различны, траектории колеблющейся точки представляют собой сложные линии. Если частоты колебаний вдоль  взаимно перпендикулярных осей соотносятся как целые числа

,  (8)

то линии оказываются замкнутыми и называются фигурами Лиссажу (числа nX, nY  можно определить, посчитав количество пересечений линии, образующей фигуру Лиссажу, с осями координат X и Y, причем, если ось проходит через точку пересечения ветвей фигуры Лиссажу, то эту точку считают дважды). Вид этих кривых зависит от соотношения частот, амплитуд и разности фаз складываемых колебаний, поэтому анализ фигур Лиссажу широко используется при исследовании колебаний.

Порядок выполнения работы

Часть1. Определение разности фаз сонаправленных колебаний

1.Соберите схему в соответствии с рис. 3. Для измерения напряжений используется блок амперметра-вольтметра АВ1. В качестве активного сопротивления R подключите резистор R3 или R4, в качестве реактивного сопротивления Х – конденсаторы С1, С2 или С3 по заданию преподавателя. Данные занести в табл. 1.

2. Установите  на функциональном генераторе АНР-1002 с помощью клавиш установки частотного диапазона  3                ( клавиши  и   ) и регулятора частоты 11 (регулятор «FREQUENCY») частоту выходного сигнала в диапазоне от 8 до 12 кГц. Занесите выбранное значение в таблицу 1.

3. Переведите амперметр – вольтметр в режим измерения переменного напряжения    (кнопка «=/»» на АВ1 должна быть нажата). Измерить напряжение UR. Результат занесите в табл. 1 (А1).

4. Измерьте напряжение UC между точками 2 и 3 на схеме. Результат занесите в табл. 1 (А2).

5. Измерьте напряжение U между точками 1 и 3 на схеме. Результат занесите в табл. 1 (А).

6. По формуле (1) определите разность фаз колебаний Dj = j2-j1. Результат занесите в табл. 1.      

Таблица 1

R, Ом

С, Ф

n, Гц

А1

А2

А

Dj, рад

Часть2. Определение  частоты неизвестных колебаний исследованием биений

1. Соберите схему, представленную на рис. 4. В качестве источников сигналов используются генератор напряжений ГН -1 (сигнал подается на канал А осциллографа)  и функциональный генераторе АНР-1002 (сигнал подается на канал В осциллографа). При подключении генераторов к осциллографу тщательно следите за полярностью сигнала.

2. Выберите  на генераторе напряжений ГН -1 неизвестный сигнал Х1, Х2, по заданию преподавателя.

  1.  Запустив программу “PicoScope” включите цифровой осциллограф.

4. На панели настройки канала установите автоматический диапазон входного сигнала для обоих каналов осциллографа  .

5. Для улучшения изображения сигнала на цифровом осциллографе на панели настройки канала в меню дополнительных параметров канала увеличьте разрешение каналов А и В до 12 бит.

6. Нажав на  панели захвата изображения   клавишу автоуставки , получите оптимальное изображение сигналов на осциллографе.

7. На панели синхронизации выберите режим автоматической синхронизации .  

8. Вращением регулятора амплитуды выходного сигнала 15 (регулятор “AMPLITUDE”) установить амплитуду выходного сигнала функционального генератора АНР-1002 близкой к амплитуде неизвестного сигнала.

8. C помощью клавиш установки частотного диапазона  3 (клавиши  и   ) и регулятора частоты 11 (регулятор «FREQUENCY») установите  на функциональном генераторе АНР-1002 частоту выходного сигнала nг близкой к частоте неизвестных колебаний. Значение частоты nг занесите в таблицу 2.

9. Добавьте для наблюдения на экране осциллографа канал суммирования колебаний (вкладка “Инструменты” -> “-Каналы Математики” -> “A+B”).

10. Отключите наблюдение отдельных каналов на осциллографе (вкладка “Просмотр” -> “Каналы” -> снять галочки отображения каналов А и В).

10. На панели захвата изображения измените коэффициент развертки (меню ) таким образом, что бы на экране осциллографа отображалось 2-3 периода биений (см. рис. 2).

11. Остановите обработку данных осциллографом нажав на  панели Запуска/Остановки

клавишу  – “Стоп” .

12. Определите времена начала t0 и окончания tК одного биения (левой кнопкой мыши нажать в областях начала и окончания биения). Полученные значения занесите в таблицу 2 с учетом знака.

13. Определите период биений  ТБ как разность времен окончания и начала биения  ТБ = tК- t0. Результат занесите в таблицу 2.

14. Включите обработку данных осциллографом нажав на  панели Запуска/Остановки

клавишу клавишу– “Запуск” .

15. Включите наблюдение отдельных каналов на осциллографе (вкладка “Просмотр” -> “Каналы” -> установить галочки отображения каналов А и В).

16. Повторите измерения по п. 6 - п. 15  еще два раза. Результат занесите в табл. 2.

17. Для каждого измерения в п. 6 - п.15 вычислите частоту биений , а затем по формуле (4) частоту неизвестных колебаний  nХ. Результаты обработайте по методике косвенных невоспроизводимых измерений.

Таблица 2

nг, Гц

t0, с

tК, с

ТБ, с

nб, Гц

nх, Гц

<nХ>, Гц

Dnx, Гц

enx

1

2

3

Часть3. Определение  частоты неизвестных колебаний исследованием фигур Лиссажу.

1. Нажав на  панели захвата изображения   клавишу автоуставки , получите оптимальное изображение сигналов на осциллографе.

2. Добавьте в осциллограф окно просмотра фазовых зависимостей между сигналами (вкладка “Просмотр” -> “Добавить Окно” -> XY) .

3. Изменяя частоту выходного сигнала на функциональном генераторе АНР-1002 с помощью клавиш установки частотного диапазона  3 (клавиши  и   ) и регулятора частоты 11 (регулятор «FREQUENCY») добейтесь получения одной из фигур Лиссажу (рекомендованная фигура – эллипс).

4. По формуле (8) рассчитайте частоту неизвестных колебаний. Сравните  ее со значением nХ.

Контрольные вопросы

1. Сложение сонаправленных колебаний. Метод векторных диаграмм. Определение разности фаз колебаний.

2. Сложение взаимно перпендикулярных колебаний. Анализ вариантов траектории движения.

3. Биения. Амплитуда и частота биений.

4. Методы определения частоты неизвестных колебаний.

Библиографический список

1. Савельев И.В. Курс общей физики.- М.: Наука, Физматлит, 1982, кн.1-3.

2. Детлаф А.А., Яворский Б.М. Курс физики. - М,: Высшая школа, 1999.

3. Трофимова Т.И. Курс физики. — М: Высшая школа, 2001.

4.  Курс физики.: в 2-х т., под ред. Лозовского В.Н., С-П.: «Лань», 2001.

5.  Матвеев А.Н. Электричество и магнетизм. — М: Высшая школа, 1983.

 


Рис. 1

Рис. 2

Рис. 3

Рис. 4


 

А также другие работы, которые могут Вас заинтересовать

42059. Технологии водильной буксировки воздушного судна 2.33 MB
  Технологии водильной буксировки воздушного судна Цель работы: ознакомление с основными технологическими особенностями операций буксировки и задней буксировки ВС безопасность операции буксировки меры безопасности труда. Кнструкция ВОДИЛ И БЕЗОПАСНОСТЬ ПРИмененЕНИЯ Учебные требования для выдачи свидетельства на буксировку и заднюю буксировку Существование удостоверения ни совершение задней буксировки и буксировки является важным условием ответственности. Как оператор транспортного средства задней буксировки или связист по самолетному...
42061. Изучение принципа измерения температуры при помощи термоэлектрического преобразователя 143.5 KB
  По основным характеристикам термоэлектрические преобразователи подразделяются: по назначению и эксплуатации погружные и поверхностные; по конструкции крепления ТП на месте эксплуатации с неподвижным и подвижным штуцером с фланцевым креплением; по степени от внешней среды со стороны выводов с обыкновенной или водозащищенной головкой; по степени тепловой инерционности малой до 5с средней до 60 с большой до 180 с. По конструктивному оформлению их делят на группы: показывающие КПП1; КВП1 показывающие и самопишущие с...
42063. Двойственность в линейном программировании (ЛП) 223 KB
  Цель работы изучить возможности табличного процессора MS Excel для решения двойственной задачи линейного программирования. Краткие теоретические сведения Двойственная задача ЛП Предположим что задача линейного программирования ЗЛП имеет вид: Составим другую ЗЛП число переменных которой равно числу ограничений данной задачи т. Если для второй задачи составить двойственную то получим первую задачу. сформулированные задачи составляют пару взаимно двойственных задач ЛП.
42064. Двухиндексные задачи ЛП. Транспортная задача 2.11 MB
  Решение такой задачи рассмотрим на примере оптимальной организации транспортных перевозок штучного товара из пунктов отправления складов в пункты назначения магазины. Требуется определить план перевозок количество единиц груза из пунктов i в пункты Bj так чтобы Вывезти весь груз от отправителей i Удовлетворить потребность каждого потребителя Bj Транспортные расходы были минимальными Математическая модель транспортной задачи имеет вид: требуется определить неотрицательную матрицу X удовлетворяющую условиям и доставляющую...
42065. Изучение работы измерительной цепи для измерения температуры термометром сопротивления в комплекте с нормирующим преобразователем и вторичным прибором 51.5 KB
  В процессе выполнения лабораторной работы закрепить знания по разделу Измерение температуры и Дистанционная передача сигнала измерительной информации теоретического курса Автоматизация производственных процессов Системы управления химикотехнологических процессов. Нормирующие промежуточные преобразователи предназначены для преобразования выходного сигнала первичных преобразователей не имеющих унифицированного сигнала и выходного сигнала переменного тока в унифицированный сигнал постоянного тока. Введение нормирующих...
42067. Решение задачи о назначениях 3.01 MB
  В ячейках B21:H21 находятся суммы значений соответствующих столбцов изменяемых ячеек. в B21 находится сумма ячеек B14:B20; в С21 находится сумма ячеек С14:С20; в D21 находится сумма ячеек D14:D20; в E21 находится сумма ячеек E14:E20; в F21 находится сумма ячеек F14:F20. в G21 находится сумма ячеек G14:G20; в H21 находится сумма ячеек H14:H20. В ячейках I14:I20 находятся суммы значений соответствующих строк изменяемых ячеек.