50072

Определение момента инерции махового колеса методом колебаний

Лабораторная работа

Физика

Момент инерции тела I относительно некоторой оси является мерой инертности тела при вращении его вокруг этой оси. Для материальной точки момент инерции равен произведению ее массы на квадрат расстояния до оси вращения...

Русский

2014-01-15

163 KB

5 чел.

Московский государственный университет

путей сообщения РФ (МИИТ)

Кафедра «Физика-2»

Институт, группа       ИУИТ, УПП -141                К работе допущен____________________

                       (Дата, подпись преподавателя)

Студент               Соловьева С.П                            Работа выполнена____________________

                                     (ФИО студента)                   (Дата, подпись преподавателя)

Преподаватель                   Пыканов И.В               Отчёт принят________________________                          (Дата, подпись преподавателя)

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №______6_______

        Определение момента инерции махового колеса методом колебаний      

(Название лабораторной работы)

_____________________________________________________________________________________________

  1.  Цель работы:

Ознакомление с методом измерения моментов инерции тел, обладающих осевой                       

симметрией                                                                                                                                       

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________                                              

2. Принципиальная схема установки (или её главных узлов):

   Рисунок 1- Принципиальная схема установки для измерения инерции махового колеса

3. Основные теоретические положения к данной работе (основополагающие утверждения: формулы, схематические рисунки):

Момент инерции тела I относительно некоторой оси является мерой инертности тела при вращении его вокруг этой оси. Для материальной точки момент инерции равен произведению ее массы на квадрат расстояния до оси вращения:

I  mr2,

а для тела, которое можно представить в виде системы большого количества материальных точек (рис. 6.1.а), момент инерции относительно некоторой оси вращения равен сумме произведений масс всех материальных точек на квадраты их расстояний до этой оси:

Рис.2 I  .

       ri          mi                        r         dm            О        a         

                                                                                                    О

                                                              M                         

                                                                         О   I                  I0

а)                                      б)                                    в)      О

Для вычисления момента инерции сплошного тела его мысленно разбивают на бесконечное малые области с массами dm,  каждая из которых находится на своём расстоянии r от оси вращения (рис.2б).

Понятно, что момент инерции зависит не только от общей массы тела, но и от формы тела, а также – от распределения массы по его объёму (так, например, какие-то части тела могут быть изготовлены из более тяжёлого материала, а какие-то – из более лёгкого).

Ось вращения может проходить через центр масс тела, а может и находиться вне его (рис.2в).

Момент инерции тела I относительно произвольной оси равен сумме момента инерции I0 относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела т на квадрат расстояния а между осями:

                                       

                                               I = I0 + ma2.                                                (1)

В работе определяется момент инерции махового колеса К, ось симметрии которого параллельна поверхности земли. Колесо находится в состоянии безразличного равновесия, но после крепления к нему добавочного груза Г (рис. 1), колесо может колебаться относительно горизонтальной оси.

Маховое колесо начинает совершать колебания за счет сообщенной ему извне энергии. Добавочный груз Г, поднятый на высоту h относительно положения равновесия, обладает потенциальной энергией mgh (см. рис.3).

Рис.3

При прохождении системой (К и Г) положения равновесия потенциальная энергия груза Г преобразуется в кинетическую энергию вращательного движения махового колеса К и добавочного груза Г. Таким образом,

                                                       mgh = ,                                                              (2)

где Iобщ сумма моментов инерции махового колеса I и добавочного груза IГ    

                относительно горизонтальной оси О, проходящий через центр махового колеса  

                вдоль стержня:

      

                                                       Iобщ  I  IГ,                                                                    (3)

где m  масса добавочного груза;

 g  ускорение силы тяжести;

 h  высота, на которую поднимается груз;

 макс  угловая скорость махового колеса с грузом при прохождении системой  

        положения равновесия.

Как следует из формул (2) и (3), для нахождения момента инерции махового колеса I нужно знать макс, т, h и IГ. Угловая скорость макс определяется из уравнения (2) после установления характера зависимости от времени t. Максимальное значение угловой скорости (по модулю) в момент прохождения системой положения равновесия равно:

                                                  макс  0.                                                            (4)

Высоту h поднятия центра инерции добавочного груза (см. рис.3) можно выразить так:

                                                        cos0,                                                           (5)

где R и r  радиусы махового колеса и добавочного груза соответственно.

Следовательно,

                                                        h  (R + r)(1  cos0).                                                    (6)

Подставляя в уравнение (2) найденные выражения для h и макс, получаем:

                                                 mg(R + r)(1  cos0)  .                                       (7)

Величина 0 неудобна для непосредственного измерения, поэтому исключим ее из уравнения (7). При малых углах, выраженных в радианной мере,

                                                        cos0   1  .                                                             (8)

Подставив это значение косинуса в левую часть уравнения (7), получим формулу для расчета Iобщ относительно оси О:

                                    Iобщ .                                                                  (9)   

Момент инерции добавочного груза Г относительно оси О (см. рис. 3) равен

                                              IГ    mr2 + m(R+r)2.                                                           (10)

Первый член правой части равенства момент инерции груза относительно оси О', проходящей через его центр масс параллельно оси О. Второе слагаемое – это произведение массы диска на квадрат расстояния между осями О и О'.

Из выражений (9) и (10) получаем, что момент инерции махового колеса

                                            I  Iобщ  IГ     .                 (11)

Таким образом, определение момента инерции махового колеса в данной работе удалось свести к измерению массы добавочного груза т, радиусов махового колеса R и добавочного груза r, а также – периода колебаний махового колеса Т.

Для того, чтобы подтвердить утверждение о высокой точности данного метода измерения момента инерции, предлагается сравнить полученное значение I с теоретическим (IТ), которое для махового колеса – однородного диска можно вычислить по формуле:

                                                          IТ   m0 R2,                                                            (12)

где m0  масса махового колеса.

Учитывая, что маховое колесо и добавочный груз диски одинаковой толщины, изготовленные из одного и того же материала (заметим, что для самого метода измерения момента инерции эти факторы несущественны), можно получить равенство  m0 /m   R2/r2.

Таким образом, массы дисков относятся, как их объемы или (при одинаковой толщине) – как квадраты их радиусов. Выразив из последнего уравнения массу m0 и подставив её в формулу (12), получим

                                                         IТ  mR4/r2.                                                             (13)

Необходимо измерить диаметры махового колеса D и добавочного груза d, а также время t десяти полных колебаний. Масса груза m и ускорение свободного падения считаются заданными с известной степенью точности. Используя эти обозначения, окончательно запишем:

                                         I    ,                                      (14)

                                               

                                                        IТ   mD4 / d2.                                                           (15)

4. Таблицы и графики1.

Таблица 1- Приборные погрешности    

Приборные погрешности

Масса

добавочного груза m, кг

штангенциркуля x, м

секундомера , с

0,0005

0,01

0,298

Таблица 2 – Данные вычислений 

Номер

измерения

1

2

3

4

5

Средние

значения

Диаметр махового колеса D, м

0,19

0,19

0,19

0,2

0,18

Dср   0,19

Диаметр добавочного груза d, м

0,035

0,034

0,035

0,036

0,035

dср   0,035

Время десяти полных колебаний t, с

23,4

22,6

22,4

22,4

     22,0

tср  22,56

Период колебаний T, с

2,34

2,26

2,24

     2,24

2,2

Tср   2,26

Момент инерции махового колеса I, кгм2

0,042

0,039

0,038

0,039

0,035

Iср  0,038

IТ   0,04


5. Расчёт погрешностей измерений
 

(указать метод расчёта погрешностей).

В данной работе необходимо измерить погрешности штангенциркуля и секундомера.

Погрешность измерения секундомера () принимаем равной половине цены деления, т.е. (цена деления штангенциркуля составляет 0,01м).

Приборная погрешность секундомера () определяется аналогичным образом:

()=0,01м.

Вычисления по данной работе.

1.  где N - число полных оборотов;

  [Т]=с.

   (с);

    Т2=2,26с;

Т3=2,24с;

Т4=2,24с;

Т5=2,2с.

2.

 I2=0,039 м*с2;

       I3=0,038 м*с2;

       I4=0,039 м*с2;

       I5=0,035 м*с2.

3.

0,04 кг*м2.

6. Окончательные результаты:

I=Iср.+I;

I=0,038+0,0008=0,039(м*с2).

IT=0,04м*с2.

Подпись студента:

                 

Лист – вкладыш

5. Расчёт погрешностей измерений (продолжение):

4.     I    T ;

.                                           

       T  .

         

       

                                                      


7. Дополнительная страница

(для размещения таблиц, теоретического материала и дополнительных сведений).

Поскольку в эксперименте непосредственно измеряются лишь D, d и t, а величина момента инерции определяется косвенным образом из расчетов по формуле (14), для вычисления ошибки измерения I необходимо пользоваться формулами для расчета ошибок косвенных измерений. Окончательный результат должен быть записан в виде

                                                           I  Icp ± I,                                                                (16)

где I  абсолютная ошибка измерения момента инерции махового колеса.

В данной работе основную роль в возникновении ошибки определения момента инерции играет случайная ошибка измерения периода колебаний; случайными же погрешностями измерения диаметров махового колеса и добавочного груза, а также приборными ошибками штангенциркуля и секундомера можно пренебречь.

Используя формулу (14), получим, что

                                               I    T .                                           (17)

Таким образом, вычисление I в данной работе сводится к определению случайной ошибки измерения периода колебаний T:

                                                T  ,                                                         (18)

 

где   коэффициент Стьюдента, значения которого можно найти в таблице, имеющейся

в лаборатории (таблица приведена также в методических указаниях [3]). Величину доверительной вероятности при выборе коэффициента Стьюдента по этой таблице примите равной 0,95.

Результаты вычислений I  необходимо округлить до первой значащей цифры, после чего округлите полученные ранее (см. таблицу 2) значения Iср и IТ до того же разряда, что и I.

Окончательный численный результат записать в виде

                                                        I  Icp ± I,                                                                   (19)  

                                                            IТ  ……

Обратить внимание на правильность записи единиц измерения, в которых выражены полученные значения момента инерции махового колеса.

1 Графики выполняются на миллиметровой бумаге или в компьютерном виде с использованием программ построения графиков. Необходимо соблюдать правила построения графиков.


 

А также другие работы, которые могут Вас заинтересовать

35245. Формули Н’ютона через кінцеві різниці 69.5 KB
  Мета. Навчитися обчислити значення функції при даному значенні аргумента, використовуючи формули Н’ютона через кінцеві різниці.
35248. Тема: Знаходження значення інтеграла по формулам НьютонаКотеса. 25 KB
  Мета: Навчитися знаходити значення інтеграла по формулам Ньютона-Котеса. Скласти програму.
35249. Знаходження інтеграла за формулами прямокутників 24 KB
  Навчитися знаходити значення інтегралу за формулами прямокутників. Скласти програму.
35251. Обчислення інтегралу по формулі Сімпсона. Складання алгоритму 29 KB
  Тема. Обчислення інтегралу по формулі Сімпсона. Складання алгоритму. Мета. Навчитися обчислювати інтеграл по формулі Сімпсона; склаcти алгоритм.
35252. Основи конституційного права України 115.5 KB
  начно радикальніший проект Конституції України було опубліковано у вересні 1905 р. в першому числі часопису Української народної партії Самостійна Україна під назвою Основний закон Самостійної України спілки народу українського. Цей проект передбачав повну самостійність України, територія якої мала складатися з девяти земель.
35253. Знаходження власних чисел і векторів матриці по методу Крилова 81.5 KB
  Знайти одне з власних чисел і відповідний йому власний вектор матриці А по методу Крилова (використати результати лабороторної роботи № 18).