50119

Определение коэффициента термического расширения (линейного) твердого тела

Лабораторная работа

Физика

Цель работы: 1 определить температуру металлической проволоки при протекании через нее электрического тока; 2 измерить удлинение проволоки при нагревании; 3 определить показатель коэффициента термического расширения. В данной работе экспериментально определяется коэффициент термического расширения твердого тела металлической проволоки. Из формулы [2] следует что для определения коэффициента необходимо знать начальную длину проволоки Lo изменение температуры dt и соответствующее изменение длины dL. Изменение длины проволоки можно...

Русский

2014-01-16

141 KB

120 чел.

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)

Кафедра Общей и технической физики

(лаборатория виртуальных экспериментов)

Определение

коэффициента термического расширения (линейного)

твердого тела

Методические указания к лабораторной работе № 10

для студентов всех специальностей

САНКТ-ПЕТЕРБУРГ

2010

УДК 531/534 (075.83)

СТАТИСТИЧЕСКАЯ ФИЗИКА И ТЕРМОДИНАМИКА: Лабораторный практикум курса общей физики. Смирнова Н.Н., Фицак В.В. Чернобай В.И. / Санкт-Петербургский горный институт.  С-Пб, 2010, 14 с.

Лабораторный практикум курса общей физики по статистической физике и термодинамике предназначен для студентов всех специальностей Санкт-Петербургского горного института.

С помощью учебного пособия студент имеет возможность, в предварительном плане, ознакомиться с физическими явлениями, методикой выполнения лабораторного исследования и правилами оформления лабораторных работ.

Выполнение лабораторных работ практикума проводится студентом индивидуально по графику.

Табл. 3. Ил. 2. Библиогр.: 5 назв.

Научный редактор доц. Н.Н. Смирнова

©   Санкт-Петербургский горный институт   им. Г.В. Плеханова, 2010 г.

Цель работы: 

1) определить температуру металлической проволоки при протекании через нее электрического тока;

2) измерить удлинение проволоки при нагревании;

3) определить показатель коэффициента термического расширения.

В работе используются: регулируемый источник постоянного тока; два цифровых вольтметра постоянного тока; теплоизолированная труба; металлическая проволока; микрометрический индикатор.

Практически все физические параметры изменяются при изменении температуры тела. В данной работе экспериментально определяется коэффициент термического расширения твердого тела (металлической проволоки).

Связь между температурой тела и изменением его объема задается формулой

  [1]

где     - коэффициент объемного расширения, Vo - объем при начальной температуре,

 dt - изменение температуры.

Для линейного расширения тела формула [1] приводится к виду:

  [2]

где - коэффициент линейного расширения, Lo - начальная длина тела, Lo = 1 м.

Из формулы [2] следует, что для определения коэффициента  необходимо знать начальную длину проволоки Lo, изменение температуры dt и соответствующее изменение длины dL. Изменение длины проволоки можно непосредственно измерить при помощи микрометрического индикатора, а температуру непосредственно измерить невозможно. Поэтому в данной работе определение температуры проволоки производится по изменению ее сопротивления при нагревании (термический коэффициент сопротивления предполагается известным).

Зависимость сопротивления металла от температуры имеет вид, аналогичный формуле [1]:

     [3]

Поскольку нагрев проволоки производится протекающим через нее электрическим током, зная падение напряжения на сопротивлении и силу тока, можно вычислить сопротивление проволоки:

       [4]

Силу тока определяем по падению напряжения на эталонном сопротивлении, термическим коэффициентом сопротивления которого можно пренебречь.

При выполнении работы необходимо учитывать, что зависимость [2] выполняется в ограниченном интервале температур. При значительном нагреве удлинение проволоки превышает рассчитанное по формуле [2], проявляется эффект, аналогичный пластической деформации при значительном растяжении. Поэтому при обработке экспериментальных данных необходимо рассчитывать коэффициент по температурам, незначительно отличающимся от начальной.

Экспериментальная установка

Схема установки показана на рисунке ниже:

Исследуемая проволока 2 длиной 1 м натянута внутри трубки 1, уменьшающей тепловые потери при нагревании. Верхний конец проволоки неподвижен, а нижний закреплен на поводке микрометрического индикатора 5, показывающего удлинение проволоки. Для поддержания проволоки в натянутом состоянии используется груз 4. Проволока через нагрузочное сопротивление 7 подключена к регулируемому блоку питания 8. Пульт 12 "НАГРЕВ" позволяет подключать/отключать ток в цепи, не выключая источник питания. Падения напряжений на проволоке и нагрузочном сопротивлении измеряются цифровыми вольтметрами 10 и 9. Величина нагрузочного сопротивления (10 ом или 30 ом) выбирается переключателем на пульте 11.

Предел измерения цифрового вольтметра надо выбирать минимально возможный, чтобы результат измерений содержал максимальное количество значащих цифр.

Микрометрический индикатор содержит две шкалы: внешнюю (большую) и внутреннюю (маленькую). Внешняя шкала имеет цену деления 1 мкм, один оборот внешней шкалы (100 мкм) соответствует одному делению внутренней шкалы. Один оборот внутренней шкалы соответствует перемещению 1 мм.

ЗАДАНИЕ

1. Запустите лабораторную работу.

2. Для материала проволоки определите термический коэффициент сопротивления  (из справочной таблицы).

материал

уд. сопр.

Омм 10-8

темп. коэфф. сопр.

х10-3 град-1

1

вольфрам

5,5

4,6

2

сталь

9,8

6.0

3

алюминий

2,7

4,2

4

медь

1,7

4.3

3. Включить источник питания, нажать кнопку ВКЛ на пульте "нагрев", величину нагрузочного сопротивления установить 30 Ом. Измерить падения напряжений при напряжении источника питания 1 В, 2 В. Рассчитать сопротивление проволоки, найти среднее значение. Расчет проводится по формулам:

- ток в цепи    ,

где   Uэт - показания верхнего (на стенде) вольтметра

- сопротивление проволоки      ,

где  Uпр -  показания нижнего (на стенде) вольтметра

При этом сила тока мала, нагревом проволоки можно пренебречь, и считать рассчитанное при этом сопротивление проволоки за начальное .

4. Установить величину нагрузочного сопротивления 10 ом. Меняя напряжение источника питания с шагом 5 В измерить падения напряжений и удлинение проволоки. Напряжение менять до максимального, а затем произвести измерения при уменьшении напряжения в обратном порядке. При измерении удлинения, необходимо особое внимание обращать на перемещение стрелки на внутренней шкале, так как количество оборотов маленькой стрелки не фиксируется. Результаты измерений занести в таблицу. По результатам измерений рассчитать (аналогично п.2) ток через проволоку и сопротивление проволоки при разных температурах. Рассчитать температуру, соответствующую каждому значению сопротивления:

,    С

5. Построить график зависимости удлинения проволоки от ее температуры. Отметить на графике область линейного удлинения и область пластической деформации. Рассчитать коэффициент термического расширения по результатам, соответствующим области линейного удлинения. Сравнить со справочными данными.

библиографический список

учебной литературы

  1.  Калашников Н.П. Основы физики. М.: Дрофа, 2004. Т. 1
  2.  Савельев И.В. Курс физики. М.: Наука, 1998. Т. 2.
  3.  Детлаф А.А., Яворский Б.М. Курс физики. М.: Высшая школа, 2000.
  4.  Иродов И.Е  Электромагнетизм. М.: Бином, 2006.
  5.  Яворский Б.М., Детлаф А.А. Справочник по физике. М.: Наука, 1998.


 

А также другие работы, которые могут Вас заинтересовать

32850. Политическая сфера общественной жизни. Структура и соц функции. Государство,как основной политический институт 12.55 KB
  Общество как система состоит из нескольких подсистем или сфер основными из которых являются экономическая социальная политическая духовная и экологическая. Политическая сфера – область общественной жизни включающая в себя политические отношения данного общества. и международные; политическая деятельность; политическое сознание политическая идеология и политическая психология.
32851. Экологическая сфера. Роль мед работников 11.81 KB
  Общество как система состоит из нескольких подсистем или сфер основными из которых являются экономическая социальная политическая духовная и экологическая. Экологическая сфера общества сформировалась во 2й половине ХХ в. Экологическая сфера – подсистема общества формирующаяся на основе специализированной деятельности по охране воспроизводству улучшению и приумножению природных факторов человеческого бытия. Экологическая деятельность.
32852. Духовная сфера общ6ества. Основные формы и уровни. Общественная психология и идеология,их диалектическая взаимосвязь 14.08 KB
  Специфика идеологии проявляется в том что она возникает на основе существующих в обществе экономических отношений и отражает действительность через призму этих отношений. В классовом обществе экономические отношения выступают в форме классовых интересов поэтому специфику идеологии можно конкретнее представить как отражение действительности через призму интересов определенных классов как систему идей и взглядов классов. В классовом обществе нет и не может быть надклассовой или внеклассовой идеологии. Общественно историческая практика...
32853. Религия, как форма общественного сознания 16.61 KB
  1Мораль 2Религия 3Искусство4Наука 5Философия 6Политическое сознание 7Право 8Экологическое сознание Религия – представления о мире основанные на вере в сверхъестественное и отражающие мир в иллюзорной форме. Религия как ФОС проявляется в религиозной психологии основанной на эмоциях и религиозной идеологии – учении о Боге и его отношении к миру. Религия существует много веков повидимому также долго как существует человечество.
32854. Мораль, особенности медицинской этики 13.15 KB
  Особенности медицинской этики. Одним из важнейших разделов медицинской этики является деонтология – наука о профессиональном долге врача. в связи с развитием новых медицинских технологий появилась необходимость пересмотра многих принципов медицинской этики. Сформировалась новая наука – биоэтика этика живого – дисциплина определяющая меру ответственности тех кто принимает решение о выборе метода лечения и о применении в медицинской практике новых научных знаний и медицинский технологий.
32855. Искусство 11.91 KB
  Искусство Общество – это обособившаяся от природы часть материального мира высокоорганизованная материальная система подчиняющаяся всеобщим законам и в то же время имеющаяся специфические особенности функционирования и развития. 1Мораль 2Религия 3Искусство 4Наука 5Философия 6Политическое сознание 7Право 8Экологическое сознание Искусство как ФОС – это средство отражения мира в форме художественных образов оно направлено на реализацию эстетических потребностей общества. Искусство – не только ФОС но и деятельность общества по...
32856. ФИЛОСОФИЯ НОВОГО ВРЕМЕНИ В ЕВРОПЕ. ДЖ.БРУНО, ДЕКАРТ, Ф.БЭКОН, ГОББС, Д.ЛОКК. ФРАНЦУЗСКИЙ АТЕИЗМ И МАТЕРИАЛИЗМ 56.45 KB
  Лицо эпохи постепенно начинает определять наука ее авторитет постоянно растет вытесняя на периферию культурного пространства притязания религии. Отрицательное отношение церкви к Спинозе было вызвано неявной критикой им религии что нашло позднее наиболее полное выражение в работе Теологическополитический трактат 1670. Утверждение материалистических идей французские материалисты совмещали с резкой критикой религии и церкви. Антиклерикализм и деизм Вольтера Одним из первых выдающихся французских просветителей выступивших против религии и...
32857. КЛАССИЧЕСКАЯ НЕМЕЦКАЯ ФИЛОСОФИЯ. КАНТ, ФИХТЕ, ШЕЛЛИНГ, ГЕГЕЛЬ 46.21 KB
  Немецкая философия конца XVIII первой половины XIX века есть завершение традиции классической европейской философии в целом. Хотя все представители этого этапа развития философии самобытные и яркие мыслители их объединяет общность разрабатываемых проблем и единство исследовательских принципов. С известными оговорками к немецкой классической философии можно отнести и ее критиков Людвига Фейербаха и Карла Маркса. Все представители этого направления европейской философии поставили философию в сердце культуры показали неотделимость...
32858. ФИЛОСОФИЯ МАРКСА И ЭНГЕЛЬСА 36.68 KB
  ФИЛОСОФИЯ МАРКСА И ЭНГЕЛЬСА. Созданная Карлом Марксом 1818-1883 в содружестве с Фридрихом Энгельсом 1820-1895 марксистская философия явилась своеобразным порождением немецкой классической философии: перевернутый объективный идеализм Гегеля здесь превратился в материализм а перевернутый антропологизм Фейербаха превратился хотя и не сразу в социологизм. Другая ее особенность в том что философия у Маркса и Энгельса оказалась тесно связанной с политэкономией и теорией социализма на основе переосмысления классической английской...