50192

Определение теплопроводности твердого тела (пластина)

Лабораторная работа

Физика

Плеханова технический университет Кафедра Общей и технической физики лаборатория виртуальных экспериментов Определение теплопроводности твердого тела пластина Методические указания к лабораторной работе № 18 для студентов всех специальностей САНКТПЕТЕРБУРГ 2010 УДК 531 534 075. Цель работы: определить коэффициент теплопроводности твердых тел методом сравнения с теплопроводностью эталонного материала. Поток тепла dQ протекающего через однородную перегородку толщиной и площадью при разности температур определяется формулой...

Русский

2014-01-17

213 KB

8 чел.

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)

Кафедра Общей и технической физики

(лаборатория виртуальных экспериментов)

Определение теплопроводности твердого тела (пластина)

Методические указания к лабораторной работе № 18

для студентов всех специальностей

САНКТ-ПЕТЕРБУРГ

2010

УДК 531/534 (075.83)

СТАТИСТИЧЕСКАЯ ФИЗИКА И ТЕРМОДИНАМИКА: Лабораторный практикум курса общей физики. Смирнова Н.Н., Фицак В.В. Чернобай В.И. / Санкт-Петербургский горный институт.  С-Пб, 2010, 14 с.

Лабораторный практикум курса общей физики по статистической физике и термодинамике предназначен для студентов всех специальностей Санкт-Петербургского горного института.

С помощью учебного пособия студент имеет возможность, в предварительном плане, ознакомиться с физическими явлениями, методикой выполнения лабораторного исследования и правилами оформления лабораторных работ.

Выполнение лабораторных работ практикума проводится студентом индивидуально по графику.

Табл. 3. Ил. 2. Библиогр.: 5 назв.

Научный редактор доц. Н.Н. Смирнова

©   Санкт-Петербургский горный институт   им. Г.В. Плеханова, 2010 г.

Цель работы:  определить коэффициент теплопроводности твердых тел методом сравнения с теплопроводностью эталонного материала.

Поток тепла dQ, протекающего через однородную перегородку толщиной  и площадью  при разности температур , определяется формулой

   [1]

где   - коэффициент теплопроводности, характеризующий свойства среды.

Значение коэффициента теплопроводности может быть определено непосредственно из формулы [1], если измерить на опыте величины dQ, dT, d и S. Однако точное определение dQ практически невозможно, поэтому в настоящей работе производится сравнение теплопроводности исследуемого материала 1 с теплопроводностью некоторого другого эталонного материала с хорошо известным значением коэффициента 2. При этом можно избежать измерения dQ. Суть метода следующая. Две пластинки, изготовленные из материалов с коэффициентами теплопроводности 1 и 2, зажимаются между стенками, температуры которых равны T1 и  T2 и поддерживаются постоянными во время опыта. Если толщины пластинок (d1 и d2) достаточно малы по сравнению с наименьшим линейным размером их поверхности, то можно пренебречь потерей тепла через боковые поверхности. Тогда можно считать, что тепловой поток протекает только от горячей стенки к холодной через пластины. В этом случае

       и          [2]

Из [2] получаем окончательно

     [3]

где  dT1 и dT2  - перепады температур на пластинках.

Зная теплопроводность материала одной из пластинок, используя формулу [3] легко определить на опыте теплопроводность другой пластинки. Необходимо помнить о том, что формула [3] получается в предположении сохранения теплового потока неизменным через обе пластинки, что оправдано при толщине, очень малой по сравнению с радиусом пластинки, и при теплоизоляции боковых поверхностей пластинок.

Экспериментальная установка

Схема установки изображена на рисунке ниже:

Назначение и характеристика основных элементов установки:

1. Установка состоит из пластин (2) и (3), зажатых между нагревателем (1) и холодильником (4). Пластина (2) изготовлена из материала с известным коэффициентом теплопроводности, пластина (3) - из исследуемого материала. Толщина пластины (2) - dэт, толщина пластины (3) - dиссл. Форма пластин - диск, радиус 20 см, причем толщина пластины более чем в 10 раз меньше диаметра. Между всеми соприкасающимися поверхностями проложена термопроводящая паста.

2. Нагреватель (1) подключен к регулируемому блоку питания (6). Управление термостатом осуществляется с пульта блока питания (7). Сопротивление спирали нагревателя R - 50 Ом, максимальная мощность - 800 Вт.

3. Холодильник (4) представляет толстую медную пластину, в которой просверлены каналы, по которым циркулирует вода из термостата заданной температуры. Температура холодильника Tхол принимается равной температуре воды, установленной на термостате - 20С, не регулируется. Вся установка в теплоизоляционном кожухе.

4. Температура поверхностей пластин измеряется термопарами (8), (9) и (10), зажатыми между пластинами. Индикация температуры - на табло (11), (12) и (13) соответственно.

ЗАДАНИЕ

1. Запустите работу.

2.  Запишите материал и толщину образцовой пластины.

3.   Включите термостат в режим "НАГРЕВ" и "ЦИРК". Включите блок питания.

4.  Если проводится эксперимент с металлическими пластинами, то  установите напряжение 25 В. Для прочих материалов установите напряжение 10 В.

5. Дождитесь установления теплового равновесия. Для ускорения процесса можно использовать функцию программы "Скачок во времени". Для металлических пластин достаточно 1015 мин, для неметаллов - 3040 мин.

6. Запишите разности температур на пластинах.

7. Повторяйте п.п.46 для напряжений:

- металлические пластины   25 В, 50 В, 100 В, 200 В.

- прочие материалы   10 В, 20 В, 35В, 50 В.

Физ. величина

U

T1

T2

T3

dT1

dT2

2

2ср

Ед. измерения

Номер измерения

В

оС

оС

оС

К

К

8. Рассчитайте для каждого значения напряжения коэффициент теплопроводности, найдите среднее значение.

9. По справочнику определите материал исследуемой пластины.

библиографический список

учебной литературы

  1.  Калашников Н.П. Основы физики. М.: Дрофа, 2004. Т. 1
  2.  Савельев И.В. Курс физики. М.: Наука, 1998. Т. 2.
  3.  Детлаф А.А., Яворский Б.М. Курс физики. М.: Высшая школа, 2000.
  4.  Иродов И.Е  Электромагнетизм. М.: Бином, 2006.
  5.  Яворский Б.М., Детлаф А.А. Справочник по физике. М.: Наука, 1998.

10

9

8

1

2

3

4

5

6

7

13

12

11

  1.  

 

А также другие работы, которые могут Вас заинтересовать

79688. Обучение персонала как фактор повышения эффективности работы организации 785.5 KB
  Исследовать пути создания конкурентных преимуществ организации в рыночных условиях хозяйствования; обосновать важность человеческого ресурса как главного ресурса в организации; рассмотреть понятие кадрового потенциала и пути его повышения; рассмотреть порядок организации работы по обучению персонала и систематизировать методы обучения...
79689. Планирование кадров предприятия и их подбор 233.5 KB
  Любая организация создается для выполнения каких-либо целей и нуждается в управлении, а от того насколько эффективно ею управляют, и зависит достижение поставленных задач. Найти правильные методы налаживания связей между целями организации и людьми, которые их выполняют должен руководитель
79690. Презентационные и коммуникативные навыки тренинг-менеджера 177 KB
  Обычно выделяют четыре основные цели презентации в отношении других людей: сообщить информацию; научить; создать мотивацию; развлечь. Сообщить информацию значит дать другим людям полное представление о том что является предметом презентации.
79691. Причины конфликтных ситуаций, программа оптимизации социально-психологического климата в коллективе 304 KB
  Конфликты в организации непосредственно связаны с социально - психологическими явлениями в группе: лидерство, микрогруппа, стили управления, морально - психологический климат и другие. Знание этих явлений является необходимым условием успешного управления конфликтами в организации.
79692. Психологические аспекты адаптации персонала во время испытательного срока 524 KB
  Внедрение грамотно разработанной адаптационной программы (схемы, системы) позволяет получить профессионально состоявшихся, мотивированных сотрудников, способных значительно повысить эффективность работы всей организации.
79693. Система материального стимулирования сотрудника для повышения эффективности работы предприятия 292.5 KB
  Истинные причины, побуждающие работника максимально прикладывать усилия в работе определить нелегко. Этими условиями являются его желание, возможности, квалификация и, конечно же, мотивация - то есть побуждение
79694. Історична панорама розвитку математики 82.22 KB
  Паралельно розвивалися уявлення про число Число́ одне з найголовніших понять математики яке в багатьох випадках може виступати як міра кількості чогось. Математика найдавніших цивілізацій Найдавніші відомості про використання математики господарські задачі в Стародавньому Єгипті Старода́вній Єги́пет одна з найдавніших держав на Землі і колиска цивілізації Середземноморя. Папірус Рінда Московський папірус Шкіряний сувій єгипетської математики та Вавилонії Вавило́нія давня держава в південній частині Месопотамії територія...
79695. Математика Християнського середньовіччя та епохи Відродження 485.53 KB
  Опанувавши елементарні знання, кращі учні монастирських і соборних шкіл вивчали «сім вільних мистецтв», які поділялися на дві частини: тривіум (граматика, риторика, діалектика) і квадривіум (арифметика, геометрія, астрономія, музика)
79696. Математика в Стародавньому Китаї 245.75 KB
  Періоди розвитку математики в Китаї Древнє математичне Десятікніжье Математика Китаю Висновок Список літератури Введення Математика в Китаї розвивалася з глибокої давнини і досягла свого найбільшого розвитку до XIV ст. Наша увага буде приділена математики стародавнього Китаю в період з II ст. Історія математики стародавнього Китаю розглядається в роботі у вигляді декількох глав кожна з яких є по суті незалежної один від одного про найбільш характерні проблеми математики стародавнього...