50202

Дослідження спектрального розподілу оптичної густини і визначення концентрацій водних розчинів

Лабораторная работа

Физика

В даній лабораторній роботі для дослідження спектрального розподілу оптичної густини розчинів використовується фотоелектричний спектрофотометр типу КФК–3 оптична схема якого наведена на рис. Головним елементом оптичної схеми спектрофотометра є дифракційна гратка 4 яка працює на відбивання. За рахунок виникнення оптичної різниці ходу променів що відбиваються від кожного з елементів решітки на “екраніâ€ дзеркало 5 утворюється дифракційний спектр який спрямовується на вихідну діафрагму Д2 так що в її щілину проходить лише невелика...

Украинкский

2014-01-18

591.5 KB

2 чел.


Лабораторна робота № 21

Дослідження спектрального розподілу оптичної густини і визначення концентрацій водних розчинів

Мета роботи

Ознайомитись з принципом дії фотоелектричного спектрофотометра типу КФК–3, який використовується для проведення спектральних досліджень і навчитись визначати спектральний розподіл оптичної густини та концентрацію розчинів на прикладі розчину мідного купоросу 

Для виконання лабораторної роботи студенту попередньо необхідно: знати закони геометричної оптики (§1.1.1), бути ознайомленим явищем поглинання світла (§2.6)

Прилади і обладнання

Фотоелектричний фотометр типу КФК–3, набір розчинів мідного купоросу різних концентрацій

Опис установки

Основною функцією спектрального приладу є просторове розділення на монохроматичні складові оптичного випромінювання і спрямування його на досліджуваний об’єкт. Таке завдання реалізується за допомогою основних елементів спектрального приладу прозорої для випромінювання призми або дифракційної гратки.

В даній лабораторній роботі для дослідження спектрального розподілу оптичної густини розчинів використовується фотоелектричний спектрофотометр типу КФК–3, оптична схема якого наведена на рис. 1. У спектрофотометрі можна умовно виділити дві основні частини оптичну і фотоелектричну. Головним елементом оптичної схеми спектрофотометра є дифракційна гратка 4, яка працює на відбивання. Така дифракційна гратка є дзеркальною поверхнею, яка розбита на велику кількість смужок (елементів) подібно до того, як це зроблено в дифракційній гратці, що працює на пропускання. Світло, що випромінюється лампочкою розжарення 1, після проходження конденсора 2 та діафрагми Д1 утворює вузький паралельний пучок світла, який попадає на дифракційну гратку. За рахунок виникнення оптичної різниці ходу променів, що відбиваються від кожного з елементів решітки, на “екрані” (дзеркало 5) утворюється дифракційний спектр, який спрямовується на вихідну діафрагму Д2 так, що в її щілину проходить лише невелика частина загального спектру. Цим досягається утворення пучка світла, що характеризується вузьким інтервалом довжин хвиль (7нм), який в подальшому спрямовується на досліджуваний розчин.

Обертаючи дифракційну гратку 4 навколо осі, паралельної її штрихам, спрямовують пучки світла на вихідну щілину з інтервалу довжин хвиль 315 –990 нм.

Рис. 1

Принцип дії фотометра ґрунтується на порівнянні світлових потоків, а саме світлового потоку , який проходить через кювету з дистильованою водою, і світлового потоку Ф, що пройшов через кювету з досліджуваним розчином. Світлові потоки  і Ф попадають на фотодіод, який перетворює їх в у струми  та , і разом з темновим струмом  фотодіода (коли фотодіод неосвітлений) обробляються мікропроцесорною системою фотометра. Чисельний результат обробки для коефіцієнта пропускання (прозорості) –  або оптичної густини D висвітлюється на цифровому табло приладу.

Загальний вигляд спектрофотометра КФК−3 зображено на рис. 2.

Рис. 2

1 – ручка встановлення довжин хвиль; 2 важіль переміщення кювет; 3 − кришка кюветного відсіку; 4 − клавіатура мікропроцесорної системи; 5 світлове табло

Коефіцієнт пропускання (прозорості) показує яка частина світлового потоку, що падає на досліджуваний обєкт і проходить через нього не поглинаючись:

      .                                 (1)

Оптична густина D речовини характеризує ступінь поглинання нею монохроматичного випромінювання і описується співвідношенням

      .                                                     (2)

Послідовність виконання роботи

ЗАВДАННЯ 1. Виміряти інтервали довжин хвиль , що відповідають різним кольорам

                         видимої частини спектра

Для цього (див. рис. 2):

  1.  Увімкнути спектрофотометр в мережу 220 В, відкрити кришку 3 кюветного відсіку і розмістити на шляху світлового променя картку білого паперу.
  2.  Встановити за допомогою ручки 1 найкоротшу довжину хвилі (=307 нм), яку можна одержати за допомогою спектрофотометра.
  3.  Збільшуючи довжину  хвилі, спостерігайте появу на паперовій картці випромінювання фіолетового кольору. Записати в таблицю 1 довжину хвилі, що відповідає “початку інтервалу” випромінювання цього кольору.
  4.  Обертаючи ручку 1, зафіксуйте довжину  хвилі, на якій закінчується інтервал випромінювання фіолетового кольору. Запишіть значення цієї довжини  в стовпчик “кінець інтервалу” таблиці 1.
  5.  Продовжуйте обертати ручку 1 і виконувати такі ж вимірювання для інших кольорів спектра. Отримані результати записувати в таблицю 1.

Таблиця 1

Колір світла

Початок інтервалу , нм

Кінець інтервалу , нм

фіолетовий

синій

зелений

жовтий

червоний

  1.  Зробіть висновок про можливість візуального сприйняття короткохвильової і довгохвильової околиць спектру даного приладу.

ЗАВДАННЯ 2. Виміряти коефіцієнти пропускання і оптичної густини досліджуваного    

                         розчину на фіксованій довжині хвилі випромінювання

Для цього (див. рис. 2):

  1.  Налити в одну кювету розчинник (дистильовану воду), а в іншу – досліджуваний розчин.
  2.  Розмістити заповнені кювети в кюветний відсік фотометра розчинник у віддалене положення, а досліджуваний розчин – у ближнє положення. Закрити кришку 3 відсіку.
  3.  Перевести важіль 2 переміщення кювет в крайнє ліве положення. При цьому на шляху світлового пучка розміщується кювета з розчинником.
  4.  Ручкою 1 встановити довжину хвилі = 600 нм.
  5.  При закритій кришці 3 фотометра натиснути клавішу “Г” (градуювання) на клавіатурі 4 мікропроцесорної системи. На нижньому світловому табло 5, ліворуч від коми, висвітиться символ “Г”.
  6.  Натиснути клавішу “П” на клавіатурі мікропроцесорної системи спектрофотометра. При цьому на табло 5 висвітиться символ “П”, а зліва від нього число 100% з можливим невеликим (2) відхиленням. Це означає, що розчинник має 100% прозорість.
  7.  Перевести важіль 2 в крайнє праве положення. При цьому на шляху монохроматичного пучка розміститься кювета з досліджуваним розчином, а на табло 5 одночасно висвітиться нове значення коефіцієнта пропускання, який характеризує прозорість досліджуваного розчину.
  8.  Проведіть два повторні вимірювання на цій же довжині хвилі і переконайтесь в надійності відтворення чисельних значень. Дані вимірювань запишіть в таблицю 2.
  9.  Провести вимірювання, повторюючи п.п. 5–8 цього завдання, однак замість клавіші “П” натисніть клавішу “Е”.
  10.  Обчислити середні значення вимірюваних величин.

Таблиця 2

№ п/п

, нм

, %

D,%

1

2

3

сер.

ЗАВДАННЯ 3. Провести вимірювання та побудувати графік спектрального розподілу

                         оптичної густини досліджуваного розчину

  1.  Встановити на фотометрі довжину хвилі =350 нм і виміряти оптичну густину досліджуваного розчину за методикою, наведеній в завданні 2.
  2.  Провести подальші вимірювання оптичної густини вздовж всього спектру з кроком =50 нм, записуючи результати в таблицю 3 (лівий стовпчик).
  3.  Встановіть довжину хвилі =375 нм, і знову з кроком =50 нм виконайте другу серію вимірювань спектрального розподілу оптичної густини, записуючи дані в правий стовпчик таблиці 3.
  4.  Обчислити енергію квантів E=h, що відповідають кожній із довжин хвиль наведених в таблиці 3, виразивши її в електрон–вольтах (еВ). Одержані результати записати в таблицю 3.
  5.  Побудуйте графік . Для цього, за даними таблиці 3 (лівий стовпчик) побудуйте експериментальні точки графіка для першої серії вимірювань, позначаючи їх кружками “о”, а потім для другої серії вимірювань (правий стовпчик), позначивши експериментальні точки, наприклад (). Проведіть через обидві системи точок єдину лінію графіка.
  6.  Користуючись таблицею 1, позначте на графіку штриховкою, застосувавши відповідний колір, області фіолетового, синього і червоного кольорів спектру.

Таблиця 3

, нм

Е, еВ

D

, нм

Е, еВ

D

350

375

400

425

450

475

500

525

550

575

600

625

Примітка Описана методика вимірювань дозволяє, з одного боку, переконатись в ступені відтворюваності фізичної закономірності. З іншого боку, вона дозволяє переконатись, чи не має даний розчин вузьких смуг селективного поглинання.

ЗАВДАННЯ 4. Визначення концентрації розчину за градуюальним графіком

Для цих вимірювань вибирають довжину хвилі, що відповідає зростанню графіка на поличці інтенсивності поглинання (рекомендоване значення =600 нм. Після чого:

  1.  Виміряти оптичну густину  розчину відомої концентрації.
  2.  Провести вимірювання оптичної густини для інших розчинів відомих концентрацій, які знаходяться на робочому місці. Результати вимірювань записати в таблицю 4.
  3.  Побудувати графік залежності оптичної густини D від концентрації  розчину  за даними таблиці 4.
  4.  Послідовно наливати в кювету досліджувані розчини з невідомими концентраціями і вимірювати їх оптичні густини . Отримані результати записати в таблицю 4.
  5.  Користуючись графіком, отриманим в п.п. 3 визначте концентрації розчинів. Результати вимірювань записати в таблицю 4.

Таблиця 4

Розчини з відомою концентрацією

Розчини з невідомою концентрацією

С, %

D

D

C,%

1

2

3

4

Контрольні запитання

  1.  Яка основна функція спектрального приладу?
  2.  Що є основним елементом оптичної схеми спектрофотометра КФК–3?
  3.  Що називається коефіцієнтом пропускання та оптичної густини?
  4.  Дайте відповідь на питання: “Як пояснити колір розчинів
  5.  Яку фізичну інформацію можна одержати із аналізу спектрального розподілу оптичної густини розчинів?

  


 

А также другие работы, которые могут Вас заинтересовать

45844. Стимулирование сбыта в системе маркетинговых коммуникаций 16.81 KB
  Стимули́рование сбы́та стимулирование продаж англ. Sles promotion читается как сэ́йлз промо́ушн продвижение продаж это вид маркетинговых коммуникаций обозначающий комплекс мероприятий по продвижению продаж по всему маршруту движения товара от изготовителя через каналы сбыта до потребителя с целью ускорения сбыта товаров. В основе данных мероприятий краткосрочное увеличение продаж путем предоставления покупателю как конечному потребителю так и розничному продавцу определенной выгоды. Виды стимулирования сбыта Стимулирование...
45845. Литьё под давлением 49 KB
  Сплавов на основе Zn l Cu. сплавов: Из l сплавов литьём под давлением изготавливаются: батареи отопления корпуса лодочных моторов и мотоциклов. Из Zn сплавов: карбюраторы мебельная фурнитура корпуса фильтров. Из Mg сплавов: детали бинокля фото и киноаппарата корпуса бензо и электропил.
45846. Модельный комплект 18.2 KB
  Конструкция модели должна обеспечивать быстрое удаление модели из формы без разрушения. величина усадки сплава выраженная в процентах серый чугун – 1 цветные сплавы – 15 углеродная сталь – 2 ; формовочные уклоны на поверхностях перпендикулярных плоскости разъёма по ГОСТ 3212 для удобства извлечения модели из плоскости формы без разрушения; галтели скругления в местах сопряжения стенок и ребер величина которых зависит от толщины сопрягаемых стенок; знаковые части модели которые не участвуют в создании конфигурации отливки...
45847. Центробежное литьё (технология) 26.5 KB
  Этот способ применяют в настоящее время преимущественно для изготовления отливок представляющих собой тела вращения втулки трубы шестерни биметаллические втулки и т.За счёт вращения изложницы достигается высокая плотность отливки. возможно изготовление тел вращения а также изза ликвации { неоднородное старение }. Центробежное литьё получается на машинах с вертикальной и горизонтальной осью вращения.
45848. Сущность процесса ГОШ, оборудование, преимущества и недостатки, область применения 12.73 KB
  После калибровки точность поковок такая же как при мех. при штамповке увеличивается производительность труда до 800 поковок в смену. в противном случае размеры поковок выходят за требования чертежа. Процесс изготовления штамповых поковок: резка проката на мерные заготовки делается на прессножницах хладноломах пилами электромеханическая и газопламенная резка.
45849. Свободная ковка 156.88 KB
  Свободной ковкой можно получать поковки от самых малых размеров до самых крупных массой до 250–300 т. Этим способом изготавливают поковки простой формы. Осадку применяют для увеличения площади поперечного сечения поковки. Раскаткой изготовляют поковки колец а протяжкой на оправке поковки сосудов высокого давления стволов орудий и др.
45850. Этапы проектирования штампованных поковок, получаемых ГОШ вдоль оси заготовок на молотах и КГШП 17.44 KB
  Автоматизированное рабочее место АРМ или в зарубежной терминологии рабочая станция worksttion представляет собой место пользователяспециалиста той или иной профессии оборудованное средствами необходимыми для автоматизации выполнения им определенных функций. Автоматизированное рабочее место АРМ определяется как правило совокупностью технических средств и программных средств. В качестве технических средств преимущественно используется ПК дополняемый по мере необходимости другими вспомогательными электронными устройствами:...
45851. Холодная штамповка. Операция вытяжка в листовой штамповке 42.56 KB
  Холодная штамповка имеет ряд преимуществ: отсутствует операция нагрева металла; поверхностный слой металла не окисляется отсутствует окалина; изделия получаются более точными по размерам и с меньшей шероховатостью поверхности. По сравнению с обработкой резанием холодная штамповка позволяет значительно сократить расход металла уменьшить трудоемкость изготовления изделий повысить производительность. Изготавливаемая вытяжкой деталь в зависимости от ее глубины и пластических свойств металла может быть изготовлена одной вытяжной...
45852. Сварка металлов 19.26 KB
  Основные виды сварки термического класса: Дуговая сварка – сварка плавлением при которой нагрев осуществляется электрической дугой. Особым видом дуговой сварки являются плазменная сварка при котором нагрев осуществляется сжатой дугой. Газовая сварка – сварка плавлением при которойкромки соединяющихся частей нагревают пламенем газов сжигаемых на выходе горелки для газовой сварки.