50215

Визначення радіуса кривизни лінзи допомогою кілець Ньютона

Лабораторная работа

Физика

1 вміти описати утворення інтерференційних смуг однакової товщини та кілець Ньютона 2.5 Прилади і матеріали Мікроскоп плоскоопукла лінза великого радіуса кривизни плоскопаралельна пластинка освітлювач з блоком живлення світлофільтри Теоретичні відомості та опис установки Оптична схема для спостереження кілець Ньютона у відбитому світлі в даній лабораторній роботі наведена на рис. Якщо визначити експериментально радіуси темних го і го кілець Ньютона то із співвідношень 2.

Украинкский

2014-01-18

235 KB

20 чел.


Лабораторна робота № 27

Визначення радіуса кривизни лінзи допомогою кілець Ньютона

Мета роботи

Експериментально визначити радіус кривизни плоскоопуклої лінзи, використовуючи інтерференційну картину у вигляді кілець Ньютона

Для виконання лабораторної роботи студенту попередньо необхідно: знати фізичну суть явища інтерференції світла (§2.1.1), вміти описати утворення інтерференційних смуг однакової товщини та кілець Ньютона (§2.1.4; §2.1.5)

Прилади і матеріали

Мікроскоп, плоскоопукла лінза великого радіуса кривизни, плоскопаралельна пластинка, освітлювач з блоком живлення, світлофільтри

Теоретичні відомості та опис установки

Оптична схема для спостереження кілець Ньютона у відбитому світлі в даній лабораторній роботі наведена на рис. 1.

На предметному столику мікроскопа знаходиться плоскопаралельна прозора скляна пластинка, а поверх неї – плоскоопукла лінза L. Монохроматичний пучок світла від освітлювача S направляють на скляну світлоподільну пластинку С, яка розміщена під кутом 45° до напрямку поширення світла. Після відбивання в точці А опуклої поверхні лінзи і дотичної до неї поверхні пластини в точці В світло поширюється у зворотному напрямку паралельним пучком та потрапляє в об’єктив мікроскопа L1. Відбиті хвилі є когерентними. Всі точки, що знаходяться на однаковій відстані  від оптичного центра лінзи перебувають в однакових умовах для спостереження інтерференційної картини. Тому в окулярі мікроскопа будуть спостерігатися світлі і темні концентричні кільця – кільця Ньютона.

Якщо визначити експериментально радіуси темних  – го і  – го кілець Ньютона, то із співвідношень (2.19) (див.§2.1.5)

 і  

можна отримати формулу для знаходження радіуса R кривизни сферичної поверхні плоскоопуклої лінзи:

                                                           ,                                                                           (1)

або

                                                     .                                                                 (2)

Загальний вигляд лабораторної установки наведено на рис. 2. Плоскоопукла лінза і плоскопаралельна пластинка попередньо розміщені і закріплені на предметному столику мікроскопа.

                             Рис.2

1 – плоскоопукла лінза; 2 – освітлювач; 3 –вмикач–вимикач освітлювача; 4 – блок живлення освітлювача; 5 – поворотний гвинт тубуса мікроскопа; 6 –мікрометричний гвинт окуляра мікроскопа.

Послідовність виконання роботи

  1.  Увімкнути освітлювач в мережу 220 В. УВАГА! Час роботи освітлювача не більш як 35 хв.
  2.  Незначним переміщенням тубуса мікроскопа поворотним гвинтом 5 (рис. 2) домогтися чіткого зображення кілець Ньютона в полі зору окуляра мікроскопа.
  3.  Переконатись, що при обертанні мікрометричного гвинта 6 окуляра мікроскопа в полі зору окуляра рухається перехрестя – біштрих.
  4.  Визначити положення кілець ліворуч. Для цього, обертанням мікрометричного гвинта 6 встановити біштрих посередині темного кільця досить віддаленого ліворуч від центра кілець, наприклад, восьмого, і записати в таблицю 1 відлік згідно з нерухомою шкалою окуляра (ціна поділки – 1 мм) і шкалою мікрометричного гвинта (ціна поділки 0,01 мм). Після цього навести біштрих на 7, 6 і т.д. темні кільця і записати відліки для цих кілець в таблицю 1.
  5.  Визначити положення кілець праворуч. Для цього поворотом мікрометричного гвинта 6 встановлювати біштрих посередині темних кілець праворуч від центра і зробити відліки для кілець аналогічно до п.п. 4. Значення відліків записати в таблицю 1.
  6.  Різниця відліків для відповідних кілець дає їх діаметр . Знаючи діаметри кілець обчислити їх радіуси .

 

Таблиця 1

Номер кільця

Відлік зліва

k, мм

Відлік справа

l, мм

Діаметр кільця

d= l-k, мм

Радіус кільця

r=d/2, мм

8

7

6

5

4

3

2

1

  1.   Комбінуючи попарно радіуси кілець, наприклад: 8 і 5, 7 і 4, 6 і 3, обчислити радіус  кривизни лінзи з врахуванням збільшення мікроскопа (3,7) за робочою формулою:

                                                              .                                                            (3)

Для червоного світла в (3) підставляти довжину хвилі .

Результати обчислень записати в таблицю 2.

  1.  Замінити світлофільтр на освітлювачі і повторити вимірювання та обчислення згідно п.п. 4–7 для оранжевого світлофільтра ().

Таблиця 2

№ з/п

m

rm , мм

n

rn , мм

R, м

ΔR, м

δR,%

1

8

5

2

7

4

3

6

3

сер.

хххх

хххх

хххх

хххх

9. Визначити абсолютну і відносну похибки знаходження радіуса  кривизни лінзи.

Контрольні запитання

  1.  У чому полягає явище інтерференції світла?
  2.  Які хвилі називаються когерентними?
  3.  Пояснити, які промені інтерферують при утворенні кілець Ньютона?
  4.  Чому інтерференційна картина в даній лабораторній роботі має форму кілець?
  5.  Вивести формули, які визначають радіуси світлих і темних кілець Ньютона у відбитому і прохідному світлі.
  6.  Як зміниться вигляд кілець Ньютона, якщо простір між лінзою і пластинкою заповнити прозорою для світла речовиною з показником заломлення більшим від показника заломлення повітря?
  7.  Пояснити, чому для спостереження кілець Ньютона лінза повинна мати великий радіус кривизни поверхні?


 

А также другие работы, которые могут Вас заинтересовать

81442. Обмен веществ: питание, метаболизм и выделение продуктов метаболизма. Органические и минеральные компоненты пищи. Основные и минорные компоненты 112.57 KB
  Но она является незаменимым элементом в пище людей которые нуждаются во внешних источниках аскорбиновой кислоты известной как витамин C в контексте питания. гипервитаминоза. Дважды Нобелевскийлауреат Лайнус Полинг о витамине B3 известном также как ниацин и ниацинамид както сказал: Меня ошеломила его очень низкая токсичность при том что он оказывает такое значительное физиологическое влияние. Витамины биотин витамин B7 витамин H холин витамин Bp фолат фолиевая кислота витамин B9 витамин M ниацин витамин B3 витамин...
81443. Основные пищевые вещества: углеводы, жиры, белки, суточная потребность, переваривание; частичная взаимозаменяемость при питании 107.95 KB
  Углеводы выполняют структурную функцию то есть участвуют в построении различных клеточных структур выполняют пластическую функцию хранятся в виде запаса питательных веществ а также входят в состав сложных молекул. Углеводы являются основным энергетическим материалом. Углеводы участвуют в обеспечении осмотического давления и осморегуляции.
81444. Незаменимые компоненты основных пищевых веществ. Незаменимые аминокислоты; пищевая ценность различных пищевых белков. Линолевая кислота - незаменимая жирная кислота 109.43 KB
  Как было показано выше основным источником аминокислот для клеток организма являются белки пищи. Белки не являются незаменимыми пищевыми факторами они являются источниками содержащихся в них незаменимых аминокислот необходимых для нормального питания. Белки значительно различаются по аминокислотному составу. Растительные белки особенно пшеницы и других злаковых полностью не перевариваются так как защищены оболочкой состоящей из целлюлозы и других полисахаридов которые не гидролизуются пищеварительными ферментами.
81445. История открытия и изучения витаминов. Классификация витаминов. Функции витаминов 110.79 KB
  Классификация витаминов. Функции витаминов. Ныне известно что куриная слепота может вызываться недостатком витамина .
81446. Алиментарные и вторичные авитаминозы и гиповитаминозы. Гипервитаминозы 107.12 KB
  С нарушением поступления витаминов в организм связаны 3 принципиальных патологических состояния: недостаток витамина гиповитаминоз отсутствие витамина авитаминоз и избыток витамина гипервитаминоз. Примеры авитаминозов: Авитаминоз С Цинга недостаток витамина C приводит к нарушению синтеза коллагена соединительная ткань теряет свою прочность. Авитаминоз D Рахит специфическая функция витамина D заключается в регуляции процессов всасывания кальция фосфора в кишечнике и отложения их в костную ткань а также реабсорбции кальция и...
81447. Минеральные вещества пищи. Региональные патологии, связанные с недостаточностью микроэлементов в пище и воде 104.17 KB
  В настоящее время 14 микроэлементов признаны необходимыми для жизнедеятельности: железо медь марганец цинк кобальт йод фтор хром молибден ванадий никель стронций кремний селен. При его недостатке часто возникают боли в суставах которые иногда ошибочно принимают за проявления ревматизма ЖЕЛЕЗО FeНедостаток железа в питании может вызвать анемию малокровие. В сочетании с белком железо образует красящее вещество крови гемоглобин а так как процесс распада и образования кровяных телец непрерывен то железо должно поступать в...
81448. Понятие о метаболизме и метаболических путях. Ферменты и метаболизм. Понятие о регуляции метаболизма. Основные конечные продукты метаболизма у человека 105.69 KB
  Обычно в метаболических путях есть ключевые ферменты благодаря которым происходит регуляция скорости всего пути. Регуляция количества молекул фермента в клетке Известно что белки в клетке постоянно обновляются. Регуляция синтеза белка может происходить на любой стадии формирования белковой молекулы. Что касается распада ферментов то регуляция этого процесса менее изучена.
81449. Исследования на целых организмах, органах, срезах тканей, гомогенатах, субклеточных структурах и на молекулярном уровне 104.98 KB
  в биохимии всё шире применяются методы молекулярной и клеточной биологии в особенности искусственная экспрессия и нокаут генов в модельных клетках и целых организмах см. Определение структуры всей геномной ДНК человека выявило приблизительно столько же ранее неизвестных генов и их неизученных продуктов сколько уже было известно к началу XXI века благодаря полувековым усилиям научного сообщества. Искусственая экспрессия ранее неизвестных генов предоставила биохимикам новый материал для исследования часто недоступный традиционными методами....
81450. Эндэргонические и экзэргонические реакции в живой клетке. Макроэргические соединения 126.67 KB
  Многие из этих реакций происходят при участии аденозинтрифосфата АТФ играющего роль сопрягающего фактора. При сопряжении процессов 1 и 2 в реакции катализируемой гексокиназой фосфорилирование глюкозы легко протекает в физиологических условиях; равновесие реакции сильно сдвинуто вправо и она практически необратима...