50231

ИЗУЧЕНИЕ ДИФРАКЦИИ СВЕТА ОТ ДИФРАКЦИОННОЙ РЕШЕТКИ

Лабораторная работа

Физика

Явление дифракции света как и интерференции интерференция волн взаимное усиление или ослабление двух или более волн при их наложении друг на друга при одновременном распространении в пространстве связано с перераспределением энергии волн или интенсивности светового потока пропорциональной энергии волны в пространстве. Следовательно и при дифракции перераспределение интенсивности возникает вследствие интерференции множества элементарных Большое практическое значение имеет дифракция света при падении его на дифракционную решетку....

Русский

2014-01-18

249.5 KB

34 чел.

PAGE  6

Московский государственный университет

путей сообщения РФ (МИИТ)

Кафедра «Физика-2»

Группа_______________________ __ К работе допущен______________________________

                                                                              (Дата, подпись преподавателя)

Студен____________________________ Работа выполнена___________________________

 (ФИО студента)                                  (Дата, подпись преподавателя)

Преподаватель____________________________ Отчёт принят________________________                                              (Дата, подпись преподавателя)

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №____42_________

ИЗУЧЕНИЕ ДИФРАКЦИИ СВЕТА ОТ ДИФРАКЦИОННОЙ РЕШЕТКИ________________________________________________

(Название лабораторной работы)

  1.  Цель работы:

 изучение дифракционной картины от дифракционной решетки в проходящем свете; определение постоянной дифракционной решетки и длины волны монохроматического света 

2. Принципиальная схема установки (или её главных узлов):


3. Основные теоретические положения к данной работе
(основополагающие утверждения: формулы, схематические рисунки):

Встречая на своем пути препятствия, световые волны могут отклоняться от прямолинейного направления распространения в область геометрической тени. Любые отклонения при распространении волн от законов геометрической оптики называются дифракцией. К дифракции волн фактически относятся все эффекты, возникающие при взаимодействии волн с объектами любых размеров, даже малый по сравнению с длиной дифрагирующей волны .

Явление дифракции света, как и интерференции (интерференция волн - взаимное усиление или ослабление двух или более волн при их наложении друг на друга при одновременном распространении в пространстве), связано с перераспределением энергии волн (или интенсивности светового потока, пропорциональной энергии волны) в пространстве. Для объяснения результатов перераспределения интенсивности волн в пространстве в результате дифракции в волновой теории используется принцип Гюйгенса-Френеля. Согласно этому принципу каждый элемент волнового фронта является  источником вторичных элементарных волн, огибающая волновых фронтов  которых будет волновой поверхностью в дальнейшие моменты времени. Согласно принципу Гюйгенса-Френеля волновое возмущение в любой точке пространства следует рассматривать как результат интерференции вторичных волн (вторичные волны когерентны), посылаемых в эту точку каждым элементом волнового фронта. Следовательно и при дифракции перераспределение интенсивности возникает вследствие интерференции множества элементарных Большое практическое значение имеет дифракция света при падении его на дифракционную решетку. В простейшем случае дифракционная решетка представляет собой систему параллельных друг другу щелей, разделенных непрозрачными промежутками равной ширины. Распределение интенсивности света в дифракционной картине определяется интерференцией вторичных волн, приходящих в точку наблюдения от различных щелей дифракционной решетки. Чаще всего для наблюдения дифракции на дифракционной решетке создаются условия, когда на дифракционную решетку падает плоская волна (дифракция Фраунгофера). В этом случае наблюдается дифракция в параллельных лучах. Согласно теории, такая дифракционная картина локализована на бесконечности, и для ее наблюдения необходимо использовать собирательную_линзу.  

В направлении первоначального распространения света будет располагаться центральный максимум (или максимум нулевого порядка) М. Максимумы 1-го, 2-го, 3-го и других более высоких порядков (М, М, М ... соответственно) располагаются симметрично относительно максимума нулевого порядка по обе стороны от него. Положение максимумов определяется такими значениями углов дифракции  (k = 0, 1, 2, 3 ...), для которых волны, приходящие в точку наблюдения ото всех щелей усиливают друг друга. Наибольшей интенсивностью обладает максимум нулевого порядка. С увеличением номера порядка максимума интенсивность максимума ослабевает.

В случае нормального падения света на решетку с шириной прозрачный штрихов (щелей) a и шириной непрозрачных штрихов (непрозрачных промежутков между щелями) b положение главных максимумов определяется из условия:

(a+b)sin=2k   (четное число длин полуволн)  (1)

или       dsin=2k,

где  - угол дифракции,  т.е. угол между нормалью к решетке и направлением отклонения лучей на решетке;  - длина дифрагирующей волны; k - порядок максимума (k = 0, 1, 2, 3 ...).

Условием минимума является:

Главный минимум:  (m=1,2,3)

Условие побочного минимума:

(a+b)sin=(2k+1)    (нечетное число длин полуволн).

Величина (a+b)=d называется периодом или постоянной дифракционной решетки.

Как следует из условий (1) углы, под которыми наблюдаются световые максимумы, зависят от длины волны. Таким образом, дифракционная решетка представляет собой спектральный прибор: если на дифракционную решетку падает не монохроматический свет, а свет сложного спектрального состава, то после дифракции на решетке на экране наблюдается спектр, причем фиолетовые лучи отклоняются решеткой на меньшие углы, чем красные (ф<кр). В месте расположения нулевого максимума (k=0, =0) находятся нулевые максимумы всех длин волн дифрагирующего света, накладывающиеся друг на друга. При попадании на дифракционную решетку белого света нулевой максимум остается белым (неокрашенным), а по обе стороны от него симметрично относительно нулевого максимума располагаются максимумы более высоких порядков, причем последовательность их окраски подчиняется условиям (1). Дифракционная решетка поэтому может использоваться как диспергирующий элемент в спектральных приборах. Условия (1) позволяют рассчитать длину волны  дифрагирующего света, если измерить все другие величины, входящие в формулы (1).

Растянутость спектра зависит от порядка спектра и постоянной дифракционной решетки (растянутость увеличивается с увеличением порядка спектра и уменьшением дифракционной решетки).

При увеличении числа щелей на дифракционной решетке через нее проходит больше света, и, следовательно, увеличивается интенсивность света в направлении главных максимумов.

На рисунке 1 схематически изображена экспериментальная установка. Установка смонтирована на оптической скамье, на которой укреплены последовательно: источник света (ИС), светофильтр (СФ), диафрагма (непрозрачная пластина с узким отверстием) со шкалой (Д), дифракционная решетка (ДР). Последовательность элементов и наличие их определяется условиями эксперимента.

Если через отверстие диафрагмы направить на ДР белый (светофильтр отсутствует) или монохроматический (светофильтр есть) свет, то за ДР (на рисунке справа от ДР) можно наблюдать дифракционную картину. Дифракционную картину можно наблюдать на экране (Э) или на сетчатке глаза наблюдателя (Г). При визуальном наблюдении кажется, что лучи, приходящие в глаз под углом  к оси оптической системы, падают на ДР также под углом , т.е. данный дифракционный максимум кажется расположенным на шкале диафрагмы на некотором расстоянии l от щели (см. рис.3). Углы дифракции лучей можно определить из условия:

Рис 3.

                                   ,                                                    (2)

где l - расстояние между нулевым максимумом и максимумом порядка k; D - расстояние от плоскости дифракционной решетки ДР до плоскости диафрагмы Д.

По условиям эксперимента углы  малы (2-3), поэтому можно считать, что  и тогда . В этом случае из (1) следует, что:

                      (3)

или                   (4).

По этим формулам и определяется постоянная решетки или длина волны данного монохроматического света, дифракцию которого наблюдали в эксперименте.

Порядок выполнения работы

1. Установить на оптической скамье источник света, красный светофильтр (кр = 6,510м = 650 нм), диафрагму со щелью, дифракционную решетку.

2. Включив источник света и передвигая дифракционную решетку вдоль оптической скамьи, найти такое положение, в котором дифракционная картина наблюдается наиболее отчетливо (один студент передвигает дифракционную решетку, а другой ведет наблюдение).

3. Определить по шкале расстояние между нулевым максимумом и максимумами 1-го, 2-го и 3-го порядков (). Измерить расстояние от плоскости дифракционной решетки до плоскости диафрагмы со щелью D. Рассчитать постоянную дифракционной решетки d по формуле (3). Данные занести в таблицу 1.

4. Заменить красный светофильтр зеленым и повторить измерения. По формуле (4) рассчитать длину волны . Данные занести в таблицу 2.

5. Определить относительные погрешности измерений d и  по следующим формулам:

,

= +,

где под  и  понимают приборные ошибки этих величин.

Результаты измерений d,  и  (для второго светофильтра) представить в виде:

d = dсредн.  d,        = средн.  .  


4. Таблицы и графики
1.

Таблица 1Данные для определения постоянной дифракционной решетки

D =            мм,   =          нм

k

lклев, мм

lкпр, мм

l, мм

d, мм

d, мм

1

2

   -

3

   -

4

   -

Таблица 2Данные для определения длины волны

d =          мм

Цвет:

k

lзлев, мм

lзпр, мм

l мм

, нм

ср, нм

1

 -

2

 -

3

 -

4


5. Расчёт погрешностей измерений
 

(указать метод расчёта погрешностей).

6. Окончательные результаты:

Подпись студента:

1 Графики выполняются на миллиметровой бумаге или в компьютерном виде с использованием программ построения графиков. Необходимо соблюдать правила построения графиков.


 

А также другие работы, которые могут Вас заинтересовать

22216. Пластмассы, как материал для строительных конструкций. Основные виды конструкционных пластмасс и области их применения 138 KB
  Пластмассы в большинстве своем представляют многокомпонентные смеси. Наполнители компоненты вводимые в пластмассы с целью улучшения их механических и технологических свойств повышение теплостойкости снижения стоимости. В зависимости от вида смол под влиянием на них температуры пластмассы делятся на два вида: а термопластичные пластмассы или термопласты на основе термопластичных смол; б термореактивные реапласты на основе термореактивных смол.
22217. Несущие конструкции из пластмасс. Пневматические конструкции 308 KB
  Пневматические конструкции. Первому приему в наибольшей степени отвечают тонкостенные профили трубчатые коробчатые волнистые второму пространственные конструкции одинарной или двойной кривизны своды купола оболочки а также конструкции из объемных блоков пирамидальных воронкообразных саблевидных и др. Можно выделить два основных вида пластмассовых несущих конструкций: 1 решетчатые конструкции из стеклопластиковых и винипластиковых труб; 2 конструкции из объемных элементов и пространственные конструкции.
22218. Свойства древесины как конструкционного материала. Виды и свойства строительной фанеры 1.39 MB
  Запасы древесины в наших лесах составляют около 80 млрд. деловой древесины т. Однако это количество далеко не исчерпывает естественного годового прироста древесины в отдаленных районах Сибири и Дальнего Востока.
22219. Основы расчета по предельным состояниям. Расчет элементов конструкций цельного сечения 2.29 MB
  Расчет элементов конструкций цельного сечения. Расчет элементов конструкций цельного сечения Элементами деревянных конструкций называют доски бруски брусья и бревна цельного сечения с размерами указанными в сортаментах пилёных и круглых материалов. Проверка прочности и прогибов элемента заключается в определении напряжений в сечениях которые не должны превышать расчетных сопротивлений древесины а также его прогибов которые не должны превосходить предельных установленных нормами проектирования. Растягивающее усилие N действует вдоль оси...
22220. СОЕДИНЕНИЯ ДЕРЕВЯННЫХ ЭЛЕМЕНТОВ 735.5 KB
  Соединения являются наиболее ответственными деталями деревянных конструкций. Разрушение деревянных конструкций начинается в большинстве случаев в соединениях. Более сложно решаются соединения изгибаемых элементов в которых для передачи усилий требуются рабочие связи.
22221. Дощатые и клеефанерные настилы покрытий 2.93 MB
  Клеефанерные панели выполняют функции настила прогонов водо и пароизоляции. По форме поперечного сечения клеефанерные панели могут быть следующих видов: 1 коробчатые; 2 ребристые обшивкой вверх; 3 ребристые обшивкой вниз Коробчатую клеефанерную панель применяют в утепленных покрытиях с рулонной кровлей и гладким потолком Она имеет двухсторонние обшивки образующие вместе с ребрами ряд полостей в которые по слою пароизоляции укладывают утеплитель. Наиболее распространенными являются коробчатые клеефанерные панели которые используют не...
22222. Балки и прогоны цельного сечения. Составные балки на податливых связях 3.02 MB
  Балки и прогоны цельного сечения Основное функциональное назначение балок и прогонов в том что они служат несущими конструкциями покрытий. Балки и прогоны цельного сечения выполняются из досок на ребро брусьев и бревен чаще окантованных с двух сторон. Ввиду ограниченности размеров сечений и длины лесоматериалов такие балки применяют при пролетах до 6 м.
22223. Государство и право в период нэпа 22.6 KB
  Еще в годы гражданской войны Зиновьев Каменев Бухарин говорили о диктатуре уже не пролетариата а о диктатуре партии. Троцкий диктатура партии при содействии красной армии национализация средств производства монополия внешней торговли. С одной стороны речь идет о диктатуре партии. Большинство соратников Ленина придерживались позиции диктатуры партии.
22224. Право в периода новой экономической политики 21.33 KB
  Как поднять доходы налоги. Налоги. Мы говорили что государство может существовать без каких то отношений но сказать то мы можем не собирать налоги невозможно Первым декретов в 1918 г. Эти налоги падали на в прошлом господствующие классы.