50234

Вивчення серіальних закономірностей в спектрі випромінювання водню і визначення сталої Планка

Лабораторная работа

Физика

Найбільш вивченим є спектр атома водню. Частоти випромінювання атома водню можна описати узагальненою формулою Бальмера у вигляді 4.4: 1 де частота випромінювання атома водню при його переході з го енергетичного рівня на й енергетичний рівень...

Украинкский

2014-01-18

428.5 KB

7 чел.

Лабораторна робота №44

Вивчення серіальних закономірностей в спектрі випромінювання водню і визначення сталої Планка

Мета роботи

Експериментально дослідити видиму частину спектра випромінювання атомів водню, за результатами вимірювань розрахувати сталу Планка

Для виконання лабораторної роботи студенту попередньо необхідно: знати серіальні закономірності формування спектра випромінювання атома водню та вміти їх пояснити

за теорією Бора (§4.1)

Прилади і матеріали

Монохроматор типу УМ–2, неонова лампочка, прилад СПЕКТР–1

Теоретичний відомості і опис установки

Як відомо спектр кожного газу складається з окремих спектральних ліній або груп (серій) близько розташованих ліній. Найбільш вивченим є спектр атома водню. Частоти випромінювання атома водню можна описати узагальненою формулою Бальмера у вигляді (4.4):

                                                              ,                                                         (1)

де   частота випромінювання атома водню при його переході з го енергетичного рівня на й енергетичний рівень;   стала Рідберга;  і цілі числа (, а  набуває значень

і т.д.).

Стала Рідберга  у формулі (1) визначається співвідношенням (4.7) (див. §4.1)

 ,                                                                   (2)

де порядковий номер атома водню (=1); m=9,11·10-31 кг – маса електрона; е=1,6·10-19 Кл – заряд електрона; =8,85·10-12 Ф/м – електрична стала; с=3·108 м/с – швидкість світла у вакуумі;   стала Планка.

Кожному значенню  в (1) відповідає серія спектральних ліній. Для видимої частини спектра атома водню =2.

Формулу (1) з урахуванням (2) можна записати таким чином:

                       .                                                    (3)

Виражаючи частоту випромінювання  через довжину хвилі  з (3) одержуємо вираз для визначення сталої Планка:

    .                                                       (4)

З врахуванням того, що для атома водню =1  вираз (4) перепишемо у вигляді

.                                                             (5)

Перехід атомів газу із основного стану в збуджений легко здійснити за допомогою електричного розряду в розрідженому газі. Перехід атомів із збудженого стану в основний проходить спонтанно (самовільно) з випромінюванням ліній усіх серій.

В даній лабораторній роботі визначають наступні лінії в спектрі випромінювання водню, які лежать у видимій частині спектру і становлять 400600 нм:

  •  червону лінію , (= 3);
  •  зелено-голубу лінію , (= 4);
  •  фіолетово − синю лінію , (= 5);
  •  фіолетову лінію , (= 6).

Експериментальна установка зібрана на основі монохроматора УМ–2, який використовується як спектроскоп. Оптична схема установки наведена на рис. 1.

Рис. 1

1 − воднева газорозрядна трубка; 2 − блок живлення трубки; 3 – збиральна лінза; 4 − вхідна щілина;

5 − об’єктив коліматора; 6 − дисперсійна призма; 7 − об’єктив зорової труби; 8 − візир; 9 − окуляр;

10 – захисний кожух неонової лампочки; 11 неонова лампочка.

На вхідну щілину 4 монохроматора направляють світло від неонової лампочки 11 в кожусі 10 або газорозрядної водневої трубки 1 пристрою СПЕКТР –1.

Загальний вигляд установки зображений на рис. 2.

Рис. 2

1 монохроматор; 2 воднева газорозрядна трубка в захисному кожусі; 3 блок живлення трубки;

4 неонова лампочка в захисному кожусі; 5 барабан довжин хвиль монохроматора;

6 і 7 регулювальні гвинти окуляра монохроматора; 8 окуляр.

Послідовність виконання роботи

ЗАВДАННЯ 1. Градуювання монохроматора

Для цього (див.рис.2):

  1.  Розмістити близько до вхідної щілини монохроматора 1 неонову лампочку 4, яка розміщена в захисному кожусі, і увімкнути її в мережу 220 В.
  2.  Встановити ширину вхідної щілину монохроматора ~ 0,22 мм.
  3.  Досягнути чітке зображення спектральних ліній в окулярі 8 монохроматора за допомогою

регулювальних гвинтів 6 та 7, а оптимальну ширину спектральних ліній – незначним регулюванням ширини вхідної щілини монохроматора.

  1.  Плавно обертаючи барабан 5 довжин хвиль монохроматора, суміщати з візиром монохроматора видимі в окуляр 8 спектральні лінії випромінювання неону та встановлювати відповідність між значеннями  і відносними поділками  шкали барабана довжин хвиль (для спектру випромінювання неону значення  вказані на робочому місці).
  2.  Результати вимірювань записати в таблицю 1.
  3.  Вимкнути з мережі 220 В неонову лампочку і зняти її з оптичної лави.
  4.  Побудувати графік залежності  (графік градуювання монохроматора), відкладаючи по осі Х відносні поділки  шкали барабана 5 довжин хвиль, а по осі Y − довжини хвиль  відповідних ліній.

, Å

n, відн. од.

                                                                                                                                               Таблиця 1

ЗАВДАННЯ 2. Визначення довжин хвиль спектральних ліній випромінювання атомів  

                         водню та сталої Планка

  1.  Розмістити на місці неонової лампочки прилад СПЕКТР – 1.
  2.  Увімкнути прилад СПЕКТР–1 в мережу 220 В і встановити перемикач на ньому в положення “H2”.
  3.  Переміщаючи окуляр 8 зорової труби монохроматора 1 за допомогою регулювальних гвинтів 6 і 7 добитися чіткого зображення ліній випромінювання атомів водню в окулярі.
  4.  Дивлячись в окуляр монохроматора, встановлювати почергово поворотом барабана 5 довжин хвиль спектральні лінії випромінювання водню навпроти візира монохроматора і проводити відліки, що відповідають цим лініям, за шкалою барабана монохроматора. Візуальний пошук ліній необхідно починати з найбільш інтенсивної червоної  лінії. Одержані результати записати в таблицю 2.

УВАГА! В спектрі водневої трубки поряд з лініями атомного спектру спостерігається спектр молекулярного водню.

Таблиця 2

Колір і індекс лінії

n,

відн.од.

λ,

нм

Квантові числа

h·1034,

Дж·с

Δh·1034,

Дж·с

δh, 100%

n

k

Яскраво−червона,

H

2

3

Зелено−голуба,

H

2

4

Фіолетово−синя,

H.

2

5

Фіолетова,

2

6

Сер.

хххх

хххх

хххх

хххх

  1.  Користуючись кривою градуювання монохроматора визначити довжини хвиль кожної з ліній випромінювання водню.
  2.  Розрахувати за формулою (5) сталу Планка, використовуючи довжини  хвиль ліній випромінювання водню: , ,і .
  3.  Дані, які одержані в п.п. 5−6, записати в таблицю 2.
  4.  Проаналізуйте одержані результати і зробіть висновки.

Контрольні запитання

  1.  Які серії випромінювання, крім серії Бальмера, ще має спектр випромінювання атом водню?
  2.  Який фізичний зміст мають квантові числа  і  у формулі (1)?
  3.  Сформулюйте постулати Бора. Як з їх допомогою пояснити лінійчатий характер спектру випромінювання атома водню?
  4.  Які фізичні величини необхідно знати для того, щоб розрахувати постійну Планка в даній роботі?
  5.  Знайдіть частоту обертання електрона в атомі водню.
  6.  Виведіть формулу, яка визначає повну енергію електрона в атомі водню.

 


 

А также другие работы, которые могут Вас заинтересовать

4564. Совершенствование мотивации труда как функции управления на примере ОАО Хлебная база № 52 Заринского района 469.5 KB
  Совершенствование мотивации труда как функции управления на примере ОАО Хлебная база № 52 Заринского района Введение Одним из основных условий высокой эффективности деятельности организации любой формы собственности является наличие сознательной тру...
4565. Определение интенсивности теплового излучения 43.23 KB
  Определение интенсивности теплового излучения Цель работы Измерение интенсивности теплового излучения, определение эффективности теплозащитных экранов. Теория метода К теплоотражающим относят экраны, изготовленные из материалов, хорошо отражающих те...
4566. Запутывающие преобразования в программировании 23.15 KB
  Запутывающие преобразования Цель работы: научится программировать средства затрудняющие изучение программ. Задание: Изучить основные методы обфускации. По заданию преподавателя запрограммировать один из методов. Провести оценку зап...
4567. Линейный конгруэнтный метод в программировании 97.5 KB
  Линейный конгруэнтный метод Линейный конгруэнтный метод является одной из простейших и наиболее употребительных в настоящее время процедур, имитирующих случайные числа. В этом методе используется операция mod(x, y), возвращающая остаток от деления п...
4568. Использование параллелизма процессора для повышения эффективности программ 35.5 KB
  Использование параллелизма процессора для повышения эффективности программ Цель работы: научить студента самостоятельно разрабатывать максимально эффективные программы. Материал для изучения. Рассмотрим задачу умножения двух n ...
4569. Модели и стандарты управления рисками проектов программных средств 603 KB
  Модели и стандарты управления рисками проектов программных средств. Основные модели управления рисками проектов программных средств Разработано несколько моделей и стандартов для анализа и сокращения рисков в жизненном цикле программных средств...
4570. Структурное тестирование программного обеспечения 173.5 KB
  Структурное тестирование программного обеспечения Основные понятия и принципы тестирования ПО Тестирование — процесс выполнения программы с целью обнаружения ошибок. Шаги процесса задаются тестами. Каждый тест определяет: свой набор исход...
4571. Разработка учебная Базы Данных (БД) MusicShop 696 KB
  Введение В настоящие время в связи с развитием компьютерной техники появилась возможность автоматизировать многие процессы. Современные магазины музыки предлагают большой выбор музыки, в связи с чем, возникает проблема поиска необходимой композиции,...
4572. Решение задачи коммивояжера разными программными методами 84.06 KB
  Введение Комбинаторика – раздел математики, посвящённый решению задач выбора и расположения элементов некоторого, обычно конечного множества в соответствии с заданными правилами. Каждое такое правило определяет способ построения некоторой конст...