50296

МОДЕЛИРОВАНИЕ ЭЛЕКТРИЧЕСКИХ ФИЛЬТРОВ

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Электрические фильтры широко применяются в измерительной и вычислительной технике в системах телеметрии и автоматического регулирования используются для устранения помех и наводок в электрических цепях и для коррекции амплитудночастотных характеристик АЧХ четырехполюсников. Фильтры классифицируются на четыре основных типа: 1. LCфильтры обладают рядом достоинств таких как высокая стабильность низкий уровень собственных шумов а также возможность создания фильтров с различными частотными характеристиками.

Русский

2014-01-20

631 KB

25 чел.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ

РОССИЙСКОЙ ФЕДЕРАЦИИ

Казанский государственный энергетический

университет

МОДЕЛИРОВАНИЕ ЭЛЕКТРОННЫХ СХЕМ В ПРОГРАММЕ ELECTRONICS WORKBENCH

ЛАБОРАТОРНАЯ РАБОТА

МОДЕЛИРОВАНИЕ ЭЛЕКТРИЧЕСКИХ ФИЛЬТРОВ

Казань 2010

ЭЛЕКТРИЧЕСКИЕ ФИЛЬТРЫ

Электрическими фильтрами называются устройства, пропускающие токи определенных частот и ослабляющие токи всех других частот. Электрические фильтры широко применяются в измерительной и вычислительной технике, в системах телеметрии и автоматического регулирования, используются для устранения помех и наводок в электрических цепях и для коррекции амплитудно-частотных характеристик (АЧХ) четырехполюсников.

Фильтры классифицируются на четыре основных типа:

1. Фильтр нижних частот (ФНЧ).  Полоса пропускания ФНЧ простирается от нулевой частоты до частоты среза fгр, а полоса затухания от fгр до бесконечности.

2.  Фильтр верхних частот (ФВЧ).  Полоса затухания простирается от нулевой частоты до частоты среза fгр, а полоса пропускания от fгр до бесконечности.

3. Полосовой фильтр. Полоса пропускания простирается от низшей частоты среза f1 до высшей частоты среза f2, а полоса затухания от нуля до f1 и от f2 до бесконечности.

Режекторный фильтр. Полоса пропускания простирается от нулевой частоты до низшей частоты среза f1 и от высшей частоты среза f2 до бесконечности, а полоса затухания от f1 до f2.

Фильтр считается идеальным, если в полосе пропускания отсутствует ослабление сигналов и фазочастотная характеристика линейна, а вне полосы пропускания сигналы на выходе фильтра отсутствуют. Для создания электрических фильтров используются как LC-, так и RC-цепи.

LC-фильтры обладают рядом достоинств, таких как высокая стабильность, низкий уровень собственных шумов, а также возможность создания фильтров с различными частотными характеристиками. Однако наряду с достоинствами, LC-фильтры имеют ряд существенных недостатков: малая помехоустойчивость к электромагнитным полям, нелинейность, связанная с насыщением материала сердечника, а также большие масса и габариты при переходе к низким частотам. Создание малогабаритных высокодобротных катушек индуктивности весьма затруднительно, так как добротность катушки быстро снижается с уменьшением ее линейных размеров.

Кроме LC-фильтров в электронной аппаратуре широко применяются пьезоэлектрические фильтры. В этих фильтрах для селектирования сигналов нужной частоты используется явление механического резонанса, возникающего в пьезоэлектрическом кристалле при резонансной частоте приложенного напряжения. Такие фильтры отличаются большой добротностью ~ 104, высокой стабильностью АЧХ и малыми размерами. Частотный диапазон применения пьезоэлектрических фильтров составляет от сотен герц до десятков мегагерц. Как функциональные элементы пьезоэлектрические фильтры, в основном, используются в качестве полосовых и режекторных фильтров.

Благодаря развитию полупроводниковой техники и микроэлектроники широкое применение получили активные RC-фильтры – сочетание пассивных частотнозависимых RC-цепей и активного элемента – чаще всего операционного усилителя. Активные RC-фильтры позволяют получать самые различные АЧХ и по сравнению с другими типами фильтров имеют небольшие габариты и малый вес. Особенно это преимущество заметно при переходе к инфранизким и низким частотам, где при реализации  LC-фильтров катушки индуктивности получаются неприемлемых размеров. Уступая по величине добротности пьезоэлектрическим и в ряде случаев    LC-фильтрам, активные RC-фильтры отличаются простотой получения всех типов АЧХ и легкостью перестройки на различные частоты, тогда как в пьезоэлектрических фильтрах резонансная частота определяется геометрическими размерами пьезоэлектрических кристаллов. Большим достоинством активных RC-фильтров является возможность объединения в одном устройстве двух функций – фильтрации сигнала и его усиления.

Активные RC-фильтры разделяются на два основных класса: линейные и квазилинейные. В линейных фильтрах активные элементы используются в линейном режиме. Принцип работы квазилинейных фильтров основан на использовании нелинейных характеристик активных элементов. К числу квазилинейных фильтров относятся квадратурные, синхронные и цифровые, а также фильтры с фазовой автоподстройкой частоты (ФАПЧ).

Основной особенностью синхронных и квадратурных фильтров является преобразование спектра входных сигналов и возможность получения добротностей ~ 106. Однако в электронной аппаратуре наиболее часто требуемая добротность фильтров не превышает 50. Фильтры с такой добротностью легко создаются на основе линейных активных RC-цепей. Основные достоинства линейных цепей – это простота реализации, малый уровень входного шума и большой (до 120 дБ) динамический диапазон. Основные недостатки линейных цепей заключаются в трудности получения высоких добротностей и большой стабильности АЧХ. Это обусловлено их склонностью к самовозбуждению при больших коэффициентах усиления операционного усилителя, а также зависимостью параметров активного     RC-фильтра от стабильности характеристик, входящих в схему фильтра пассивных элементов.

В зависимости от полосы пропускаемых частот, фильтры подразделяются на фильтры нижних частот (НЧ фильтры), фильтры верхних частот (ВЧ фильтры), полосовые фильтры и режекторные фильтры. Соответствующие им АМПЛИТУДНО-ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ (АЧХ) показаны на рис.1.

Наряду с АЧХ фильтра значительный интерес представляет его ФАЗО-ЧАСТОТНАЯ ХАРАКТЕРИСТИКА (ФЧХ), т.е. сдвиг фазы выходного сигнала по отношению к входному в зависимости от частоты. Фаза важна потому, что сигнал, прошедший через фильтр без изменения амплитуды в полосе пропускания может быть искажен по форме, если временное запаздывание при прохождении через фильтр не будет постоянным для различных частот. Постоянное время задержки (для всех частот) соответствует линейному изменению сдвига фазы в зависимости от частоты, поэтому фильтр с линейной фазой обеспечивает неискаженную передачу формы сигнала. ФЧХ различных фильтров также показаны на рис.1.

В зависимости от полосы пропускаемых частот, фильтры подразделяются на фильтры нижних частот (НЧ фильтры), фильтры верхних частот (ВЧ фильтры), полосовые фильтры и режекторные фильтры. Соответствующие им АМПЛИТУДНО-ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ (АЧХ) показаны на

Рис.1. Амплитудно-частотные и фазо-частотные характеристики фильтров.
a) фильтр нижних частот;
b) фильтр верхних частот;
c) полосовой  фильтр;
d) режекторный фильтр.

Наряду с АЧХ фильтра значительный интерес представляет его ФАЗО-ЧАСТОТНАЯ ХАРАКТЕРИСТИКА (ФЧХ), т.е. сдвиг фазы выходного сигнала по отношению к входному в зависимости от частоты. Фаза важна потому, что сигнал, прошедший через фильтр без изменения амплитуды в полосе пропускания может быть искажен по форме, если временное запаздывание при прохождении через фильтр не будет постоянным для различных частот. Постоянное время задержки (для всех частот) соответствует линейному изменению сдвига фазы в зависимости от частоты, поэтому фильтр с линейной фазой обеспечивает неискаженную передачу формы сигнала. ФЧХ различных фильтров также показаны на рис.1.

                                  Рис. 2  Схема фильтра нижних частот

                                    Рис. 3  Схема фильтра верхних частот

                      Рис. 4 Схема режекторного фильтра с двойным Т- мостом

                        Рис. 5 Схема трехконтурного режекторного фильтра

       Рис. 6  Схема полосового фильтра

Задание на выполнение лабораторной работы.

1. Провести моделирование фильтров по схемам на рисунках 2- 6.

2. Определить частоты среза дл ФНЧ и ФВЧ.

3. Определить полосу пропускания для режекторного и полосового фильтров.

4. Выяснить как влияет изменение величин резисторов R6 (схема на рис. 5) и R1 (схема на рис. 6) на АЧХ фильтров.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Карлащук А.И. Электронная лаборатория на IBM PC, Москва, изд.     Салон–Пресс, 2004г.

2. Дорошенко А.Н., Логинов В.А., Федоров В.Н. Моделирование дискретных устройств в системе ELECTRONICS WORKBENCH, Москва, изд. МЭИ, 2004г.

3. Смоляков Б.П., Андреев Н.К., Малеев Н.А.  Расчет и исследование активных корректирующих цепей информационного канала автоматизированного электропривода. Изд. КГЭУ, 2010г.

PAGE  12


 

А также другие работы, которые могут Вас заинтересовать

21040. Исследование электромагнитных контакторов 67 KB
  Электромагнитный контактор представляет собой электромагнит постоянного или переменного тока по обмотке которого протекает ток. В качестве приводных электромагнитов постоянного тока обычно применяются клапанные Побразные электромагниты с внешним качающимся якорем рис. Кроме того необходимо иметь гибкое соединение для подвода тока к подвижному контакту. Исполнение дугогасительных систем контакторов зависит от рода и уровня тока коммутируемой цепи.
21041. Исследование герконовых реле 178.5 KB
  Ульянова Электротехнический факультет Кафедра электрических и электронных аппаратов ЛАБОРАТОРНАЯ РАБОТА №64 Исследование герконовых реле Выполнили студенты группы ЭТ2103: Кузнецов А. Лабораторная работа №64 Исследование герконовых реле Цель работы: изучение конструкций герконов и реле на их основе исследование параметров реле и геркона. Отечественной промышленностью выпускаются одно и многоконтактные реле на замыкание размыкание и переключение преимущественно с расположением герконов внутри катушки управления и с внешним...
21042. Виртуальные машины 207.5 KB
  Опять же необходимо указать имя и место сохранения создаваемого диска. Поэтому сразу выберите место для сохранения с учетом достаточности свободного пространства на реальном разделе жесткого диска. Отмечу некоторые особенности: к системе можно подключить три жестких диска. Напоследок рассмотрим процедуру создания нового виртуального жесткого диска.
21043. УСТАНОВКА ВИРТУАЛЬНОЙ МАШИНЫ и ОС WINDOWS XP 763 KB
  Представьте как это удобно если вы хотите разрешить виртуальной машине полный доступ к вашим файлам на реальной машине. При выборе этого пункта создается лишь файл виртуальной машины без дефолтного железа после чего открывается окно настройки и на образ навешиваются и настраиваются дополнительные виртуальные комплектующие сетевые адаптеры образа дисков и прочее. Нажмите кнопку Next На третьем экране нам предлагают ввести имя нашей виртуальной машины и место где мы ее разместим на физическом диске компьютера.
21044. Работа с файлами и дисками в ОС Windows XP 161.46 KB
  В 32битной ОС Windows XP в виде командной оболочки методом эмуляции реализован режим MSDOS позволяющий выполнять все указанные выше действия по работе с файлами и дисками. Подготовка к выполнению лабораторной работы К числу основных команд и служебных утилит используемых при работе с файлами дисками и томами в ОС Windows XP посредством командной оболочки относятся: Assoc Attrib Cacls Cd Chdir Chkdsk Chkntfs Comp Compact Convert Copy Date Del Dir Diskcomp Diskcopy Erase Fc Find Findstr Format Label Md Mkdir Move...
21045. Патофизиология гемостаза 37.5 KB
  Этиология патогенез и патогенетическая терапия наследственной и приобретенной патологии сосудистотромбоцитарного гемостаза. Этиология патогенез и патогенетическая терапия вторичных нарушений коагуляционного гемостаза. Функции системы гемостаза: В норме поддержание жидкого состояния крови При патологии повышение свертываемости крови Патология гемостаза делится на 2 группы: гиперкоагуляция гипокоагуляция МЕХАНИЗМЫ ГЕМОСТАЗА а тромбоцитарнососудистый б коагуляционный Оба механизма включаются одновременно.
21046. Патофизиология почек и кислотно-щелочного равновесия 19 KB
  ПЛАН ЛЕКЦИИ : Определение и классификация почечной недостаточности. Этиология патогенез принципы диагностики и патогенетической терапии острой почечной недостаточности. Этиология патогенез принципы диагностики и патогенетической терапии хронической почечной недостаточности. Классификация почечной недостаточности по этиопатогенезу: Преренальная характеризуется нарушением притока крови по a.
21047. Патофизиология язвенной болезни, голодание 54.5 KB
  Цель лекции: Изучить этиологию патогенез и принципы терапии язвенной болезни желудка и двенадцатиперстной кишки. Язвенная болезнь это заболевание с наследственной предрасположенностью с полигенным типом наследования основным морфологическим субстратом которой является формирование одиночного либо множественных язвенных дефектов на слизистой желудка либо ДПК. Наиболее часто язвенные дефекты формируются в антральном отделе желудка и в луковице ДПК. Язвы тела и дна желудка наблюдаются редко и рассматриваются как предраковые изменения.
21048. Патофизиология экстремальных состояний 23 KB
  Рассмотреть вопросы этиологии патогенеза и патогенетической терапии шока коллапса комы и обморока. Определение виды патогенез принципы патогенетической терапии шока. Характеристика шока. Классификация шока.