50327

Определение кинематических характеристик по стробоскопическим фотографиям

Лабораторная работа

Физика

Ошибкой измерения называется разность: Погрешность ∆Xэто количественная мера неизвестной экспериментатору ошибки ∂x.Отсчета и округления Относительная погрешность измерения: или б Погрешность прямых измерений nго количества наблюдений случайное отклонение результата iго измерения от среднего. средняя квадратичная погрешность отдельного наблюдения. Если то это наблюдение промах средняя квадратная погрешность всей серии n ...

Русский

2014-02-03

246.5 KB

1 чел.

Министерство образования Республики Беларусь

Учреждение образования

Брестский государственный технический университет

Кафедра физики

Отчет по лабораторной работе №1

Выполнил:

                                                                студент группы КП-14

                                                                               Соболь Д. А.

Поверил:

                                                      Поляченко В. В.

Брест 2003

1. Цель работы:

Изучение основ теории погрешностей и методов обработки экспериментальных результатов. Определение кинематических характеристик по стробоскопическим фотографиям.

2.Пиборы и принадлежности:

Стробоскопические фотографии, линейка, карандаш.

3.Основы теории погрешностей и методы обработки экспериментальных результатов.

А)Измерения .погрешности измерений .

Основным методом получения информации об изученном в физике является окнт.

Количество информации о явление дают измерения. Виды измерений : а) прямые-измерения,  в которых значение измерений величины находится непосредственно из отчета по шкале прибора; б) косвенные –измерения ,при которых интересующая величина находится  как функция одной или нескольких прямым образом измеряемых величин.

Каковы бы не были способы и методы измерения, а измеренное значение .Физической величины X  почти всегда  отличается  от ее истинного значения .

Ошибкой измерения называется разность:

Погрешность ∆X-это количественная мера неизвестной экспериментатору ошибки x.

Количественноx можно задать как наиболее возможную по модулю ошибку ,так чтобы выполнялось неравенство    

 или

                                                        

Вводится вероятность Р=0.95.

Основная задача физических измерений состоит в том, чтобы указать интервал внутри которого с заданной наперед вероятностью находится истинное значение искомой величины : х-доверительный интервал, Р-доверительная вероятность или надежность.

Погрешности:

1.Поправки  

2.Разброса

3.Приборные

4.Отсчета и округления

Относительная погрешность измерения:

    

     или

б) Погрешность прямых измерений

n-го количества наблюдений

---   случайное отклонение результата i-го измерения от среднего.

--  средняя  квадратичная погрешность отдельного наблюдения.                                     

 

Если, то это наблюдение – промах

  --средняя квадратная погрешность всей серии n 

наблюдений.

где —коэффициент Стьюдента ,n-кол-во опытов, p-доверительная вероятность.

Погрешность прибора ∆х: Р=0,95 ,—предельная погрешность

Погрешность отсчета и округления  .

  ,

 

б) Погрешность косвенных измерений

     

,где        -- частная производная функции

                                                                   

по аргументу Xi при среднем

значении <Xi>,P=0,95  при

условии, что она для всех ∆Xi

     

4. Кинематика материальной точки.

Кинематические законы движения точки:

x=x(t);y=y(t);z=z(t)

Вектор перемещения

за время  

Если S= S(t) ,     ,   то  , где - единичный вектор касательной.

Направляющие косинусы вектора скорости:

Вектор среднего ускорения  <a>        

Вектор мгновенного ускорения

Тангенциальное ускорение точки

Нормальное ускорение:

Полное ускорение :            или             

4. Пример определения кинематических характеристик по стробоскопическим фотографиям.

На рис. 1 приведена стробоскопическая фотография движения материальной точки и указаны координатные оси.

  Задание 1: Найти кинематический закон движения точки.

Спроецируем точки на координатные оси с учетом масштаба и выпишем таблицу  значений координат точки, считая б что фотографирование началось при t=0

t, c

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

X, cм

0

3

6

8,9

11,9

14,9

17,8

20,8

23,7

Y, см

11,3

11

10,6

9,8

8,6

7

5

2,6

0

   Поскольку  в данном случае нет особого смысла много раз измерять  координаты, ибо мы будем получать все время один и тот же результат, то следует положить

   Приборная погрешность при измерении линейкой длиной 200 мм составляет

мм

   Погрешность отсчета и округления при округлении координат до 1 мм составляет

   Следовательно результирующая погрешность с учетом масштаба будет равна по формуле:

 

 На рисунке 2 изображена зависимость x(t)=at+b, где a,b –постоянные

X(t)=29,63t+0.04   ,

На рисунке 3 изображена зависимость

     ,

Вычисляем критерий значимости. Одним из наиболее удобных критериев

Является так называемый «критерий хи-квадрат» или критерий Пирсона

и вычисляется как частное суммирования и погрешности измерений взятых в квадрате.

Для х     , принимаем как  и вычислили  =0,52

Для y      , ==0.52

  Найдя дополнительно число степеней свободы  в нашем случае для х  n=12-3=9

Где 12—число измерений а  3 - это число параметров увеличенных на единицу

Для   y n=12-4=8

Зная   убедимся в справедливости гипотезы. Это производим с помощью таблицы.

Итак мы нашли кинематический закон движения

X(t)=29.63t+0.04         

Задание 2: Найти модуль скорости точки в середине интервала наблюдения и углы , составляемые с осями координат в этот момент. Изобразить вектор скорости на рис. 1.

Середина интервала наблюдения соответствует 

 x= x(t)=29.63t+0.04        y=

                         

 

 пологая t=0,04 с.  получим  

Рассчитаем погрешности:

             

                                                       где   

Задание 3: Найти ускорение точки в тот  же момент времени и углы , составляемые вектором ускорения с осями координат . Изобразить вектор ускорения на рис. 1

Так как величины от времени не зависят (т. t. const) , то такими они же будут  и при

Задание 4: Найти тангенциальное и нормальное ускорения точки  в тот же момент времени

Нормально ускорение,  характеризует быстроту изменения в данный момент направления вектора   и находится по формуле :

                   или       

Покажем на рис. 1 векторы  

Задание 5: Найти радиус кривизны траектории в точке, соответствующей тому же моменту времени.

Рис. 1

Рис. 2

Рис. 3


 

А также другие работы, которые могут Вас заинтересовать

67789. ИЗУЧЕНИЕ СИСТЕМНОЙ ШИНЫ. ШИНЫ ISA, EISA 82.5 KB
  Системная шина ISA (Industry Standard Architecture) применяется начиная с процессора i80286. Гнездо для плат расширения включает основной 64-контактный и дополнительный 36-контактный разъемы. Шина 16-разрядная, имеет 24 адресные линии, обеспечивает прямое обращение к 16 Мбайт оперативной памяти.
67791. Дослідження електричних кіл з послідовним, паралельним та змішаним з’єднанням опорів 279.5 KB
  Вивчити експериментальні методи дослідження електричних кіл з послідовним, паралельним і змішаним з’єднанням опорів. Навчитись визначати еквівалентні опори при різних способах їх з’єднання та потужності, що споживають окремі опори та електричні кола.
67792. Дослідження складних кіл постійного струму 275 KB
  Вивчити методи розрахунку складних електричних кіл і експериментально перевірити метод еквівалентного генератора. Використовувати описані вище методи у цьому випадку недоцільно бо розроблено метод еквівалентного генератора метод холостого ходу і короткого...
67793. Дослідження впливу навантаження на режими роботи джерела постійного струму. Нелінійні електричні кола 278.5 KB
  Дослідити вплив навантаження на основні характеристики передачі енергії джерелом постійного струму. Навчитися досліджувати нелінійні електричні кола. Короткі теоретичні відомості Будь-яке електричне коло складається з джерела електричної енергії, споживача та лінії передачі і його можна представити електричною схемою...
67794. Дослідження магнітного кола постійних струмів 576.5 KB
  Вивчити методи та прилади вимірювання магнітної індукції і магнітного потоку та дослідити веберамперні характеристики магнітних кіл постійного струму. Короткі теоретичні відомості Частину електротехнічного пристрою призначеного для створення в його робочому обємі магнітного поля заданої...
67795. Дослідження послідовного кола змінного струму 423 KB
  Перевірка закону Ома при аналізі послідовних кіл змінного струму, які складаються з активного опору, індуктивності і ємності, і вивчення явища резонансу напруг. Короткі теоретичні відомості Змінним називається струм, який періодично змінює свій напрямок. Напруга змінного синусоїдного струму описується функцією...
67796. Дослідження електричного кола змінного струму з паралельним з’єднанням віток 333.5 KB
  Дослідити режим роботи електричного кола з паралельним зєднанням котушки індуктивності і ємності при різних частотах вивчити вплив С і L на явище резонансу струмів та його використання для регулювання коефіцієнта потужності. Короткі теоретичні відомості На відміну від кола...
67797. Дослідження трифазної системи при з’єднанні споживачів зіркою 515.5 KB
  Вивчити основні властивості і застосування трифазних кіл при зєднанні джерела і споживачів зіркою. Дослідити роботу трифазної системи струмів при рівномірному і нерівномірному навантаженні фаз а також роботу системи при обриві фазного і нульового проводів.