50327

Определение кинематических характеристик по стробоскопическим фотографиям

Лабораторная работа

Физика

Ошибкой измерения называется разность: Погрешность ∆Xэто количественная мера неизвестной экспериментатору ошибки ∂x.Отсчета и округления Относительная погрешность измерения: или б Погрешность прямых измерений nго количества наблюдений случайное отклонение результата iго измерения от среднего. средняя квадратичная погрешность отдельного наблюдения. Если то это наблюдение – промах средняя квадратная погрешность всей серии n ...

Русский

2014-02-03

246.5 KB

1 чел.

Министерство образования Республики Беларусь

Учреждение образования

Брестский государственный технический университет

Кафедра физики

Отчет по лабораторной работе №1

Выполнил:

                                                                студент группы КП-14

                                                                               Соболь Д. А.

Поверил:

                                                      Поляченко В. В.

Брест 2003

1. Цель работы:

Изучение основ теории погрешностей и методов обработки экспериментальных результатов. Определение кинематических характеристик по стробоскопическим фотографиям.

2.Пиборы и принадлежности:

Стробоскопические фотографии, линейка, карандаш.

3.Основы теории погрешностей и методы обработки экспериментальных результатов.

А)Измерения .погрешности измерений .

Основным методом получения информации об изученном в физике является окнт.

Количество информации о явление дают измерения. Виды измерений : а) прямые-измерения,  в которых значение измерений величины находится непосредственно из отчета по шкале прибора; б) косвенные –измерения ,при которых интересующая величина находится  как функция одной или нескольких прямым образом измеряемых величин.

Каковы бы не были способы и методы измерения, а измеренное значение .Физической величины X  почти всегда  отличается  от ее истинного значения .

Ошибкой измерения называется разность:

Погрешность ∆X-это количественная мера неизвестной экспериментатору ошибки x.

Количественноx можно задать как наиболее возможную по модулю ошибку ,так чтобы выполнялось неравенство    

 или

                                                        

Вводится вероятность Р=0.95.

Основная задача физических измерений состоит в том, чтобы указать интервал внутри которого с заданной наперед вероятностью находится истинное значение искомой величины : х-доверительный интервал, Р-доверительная вероятность или надежность.

Погрешности:

1.Поправки  

2.Разброса

3.Приборные

4.Отсчета и округления

Относительная погрешность измерения:

    

     или

б) Погрешность прямых измерений

n-го количества наблюдений

---   случайное отклонение результата i-го измерения от среднего.

--  средняя  квадратичная погрешность отдельного наблюдения.                                     

 

Если, то это наблюдение – промах

  --средняя квадратная погрешность всей серии n 

наблюдений.

где —коэффициент Стьюдента ,n-кол-во опытов, p-доверительная вероятность.

Погрешность прибора ∆х: Р=0,95 ,—предельная погрешность

Погрешность отсчета и округления  .

  ,

 

б) Погрешность косвенных измерений

     

,где        -- частная производная функции

                                                                   

по аргументу Xi при среднем

значении <Xi>,P=0,95  при

условии, что она для всех ∆Xi

     

4. Кинематика материальной точки.

Кинематические законы движения точки:

x=x(t);y=y(t);z=z(t)

Вектор перемещения

за время  

Если S= S(t) ,     ,   то  , где - единичный вектор касательной.

Направляющие косинусы вектора скорости:

Вектор среднего ускорения  <a>        

Вектор мгновенного ускорения

Тангенциальное ускорение точки

Нормальное ускорение:

Полное ускорение :            или             

4. Пример определения кинематических характеристик по стробоскопическим фотографиям.

На рис. 1 приведена стробоскопическая фотография движения материальной точки и указаны координатные оси.

  Задание 1: Найти кинематический закон движения точки.

Спроецируем точки на координатные оси с учетом масштаба и выпишем таблицу  значений координат точки, считая б что фотографирование началось при t=0

t, c

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

X, cм

0

3

6

8,9

11,9

14,9

17,8

20,8

23,7

Y, см

11,3

11

10,6

9,8

8,6

7

5

2,6

0

   Поскольку  в данном случае нет особого смысла много раз измерять  координаты, ибо мы будем получать все время один и тот же результат, то следует положить

   Приборная погрешность при измерении линейкой длиной 200 мм составляет

мм

   Погрешность отсчета и округления при округлении координат до 1 мм составляет

   Следовательно результирующая погрешность с учетом масштаба будет равна по формуле:

 

 На рисунке 2 изображена зависимость x(t)=at+b, где a,b –постоянные

X(t)=29,63t+0.04   ,

На рисунке 3 изображена зависимость

     ,

Вычисляем критерий значимости. Одним из наиболее удобных критериев

Является так называемый «критерий хи-квадрат» или критерий Пирсона

и вычисляется как частное суммирования и погрешности измерений взятых в квадрате.

Для х     , принимаем как  и вычислили  =0,52

Для y      , ==0.52

  Найдя дополнительно число степеней свободы  в нашем случае для х  n=12-3=9

Где 12—число измерений а  3 - это число параметров увеличенных на единицу

Для   y n=12-4=8

Зная   убедимся в справедливости гипотезы. Это производим с помощью таблицы.

Итак мы нашли кинематический закон движения

X(t)=29.63t+0.04         

Задание 2: Найти модуль скорости точки в середине интервала наблюдения и углы , составляемые с осями координат в этот момент. Изобразить вектор скорости на рис. 1.

Середина интервала наблюдения соответствует 

 x= x(t)=29.63t+0.04        y=

                         

 

 пологая t=0,04 с.  получим  

Рассчитаем погрешности:

             

                                                       где   

Задание 3: Найти ускорение точки в тот  же момент времени и углы , составляемые вектором ускорения с осями координат . Изобразить вектор ускорения на рис. 1

Так как величины от времени не зависят (т. t. const) , то такими они же будут  и при

Задание 4: Найти тангенциальное и нормальное ускорения точки  в тот же момент времени

Нормально ускорение,  характеризует быстроту изменения в данный момент направления вектора   и находится по формуле :

                   или       

Покажем на рис. 1 векторы  

Задание 5: Найти радиус кривизны траектории в точке, соответствующей тому же моменту времени.

Рис. 1

Рис. 2

Рис. 3


 

А также другие работы, которые могут Вас заинтересовать

52393. С++ для начинающих 2.85 MB
  Мы также коснемся областей видимости класса вложенных классов и классов как членов пространства имен. В главе 14 детально исследуются средства имеющиеся в С для инициализации и...
52394. What Do You Know about Canada? 590 KB
  Right you are. At this lesson we’ll try to make a report in geography of Canada. We have invited to our English lesson your geography teacher as an expert in Geography. This lesson is unusual because you’ll get knowledge yourselves using different sources of information.
52395. Let’s celebrate together 780 KB
  Aims To develop students’ skills in all-round discussion, to practice speaking, reading, listening, writing on the topic, to study customs and traditions of English-speaking countries.
52396. Sport. We are the Champions 716.5 KB
  Objectives: - to develop communicative abilities of pupils in different situations; - to practice pupils in speaking, reading, listening; - to develop pupils` interest in sport. Level: Pre-Intermediate
52397. Чаша Гуманної Педагогіки – живе творіння 86 KB
  викладач психолого – педагогічних дисциплін куратор 202 СП групи Комунальний заклад Білоцерківський гуманітарно – педагогічний коледж Виховне заняття професійного спрямування Тема: Чаша Гуманної Педагогіки – живе творіння Мета: ознайомити з постулатами принципами Гуманної Педагогіки та основними положеннями Маніфесту...
52398. Хімія і чашка кави 80.5 KB
  Хімія і чашка кави Виконала викладач хімії спеціаліст вищої категорії Тимофеєва В. Позаурочний захід матеріал для уроків до тем: Органічні речовини в живій природі Органічні сполуки і здоров’я людини Тема: Хімія і чашка кави МЕТА: навчальна: заохочувати учнів до вивчення предмету хімії розширити їх знання про органічні сполуки...