50327

Определение кинематических характеристик по стробоскопическим фотографиям

Лабораторная работа

Физика

Ошибкой измерения называется разность: Погрешность ∆Xэто количественная мера неизвестной экспериментатору ошибки ∂x.Отсчета и округления Относительная погрешность измерения: или б Погрешность прямых измерений nго количества наблюдений случайное отклонение результата iго измерения от среднего. средняя квадратичная погрешность отдельного наблюдения. Если то это наблюдение промах средняя квадратная погрешность всей серии n ...

Русский

2014-02-03

246.5 KB

1 чел.

Министерство образования Республики Беларусь

Учреждение образования

Брестский государственный технический университет

Кафедра физики

Отчет по лабораторной работе №1

Выполнил:

                                                                студент группы КП-14

                                                                               Соболь Д. А.

Поверил:

                                                      Поляченко В. В.

Брест 2003

1. Цель работы:

Изучение основ теории погрешностей и методов обработки экспериментальных результатов. Определение кинематических характеристик по стробоскопическим фотографиям.

2.Пиборы и принадлежности:

Стробоскопические фотографии, линейка, карандаш.

3.Основы теории погрешностей и методы обработки экспериментальных результатов.

А)Измерения .погрешности измерений .

Основным методом получения информации об изученном в физике является окнт.

Количество информации о явление дают измерения. Виды измерений : а) прямые-измерения,  в которых значение измерений величины находится непосредственно из отчета по шкале прибора; б) косвенные –измерения ,при которых интересующая величина находится  как функция одной или нескольких прямым образом измеряемых величин.

Каковы бы не были способы и методы измерения, а измеренное значение .Физической величины X  почти всегда  отличается  от ее истинного значения .

Ошибкой измерения называется разность:

Погрешность ∆X-это количественная мера неизвестной экспериментатору ошибки x.

Количественноx можно задать как наиболее возможную по модулю ошибку ,так чтобы выполнялось неравенство    

 или

                                                        

Вводится вероятность Р=0.95.

Основная задача физических измерений состоит в том, чтобы указать интервал внутри которого с заданной наперед вероятностью находится истинное значение искомой величины : х-доверительный интервал, Р-доверительная вероятность или надежность.

Погрешности:

1.Поправки  

2.Разброса

3.Приборные

4.Отсчета и округления

Относительная погрешность измерения:

    

     или

б) Погрешность прямых измерений

n-го количества наблюдений

---   случайное отклонение результата i-го измерения от среднего.

--  средняя  квадратичная погрешность отдельного наблюдения.                                     

 

Если, то это наблюдение – промах

  --средняя квадратная погрешность всей серии n 

наблюдений.

где —коэффициент Стьюдента ,n-кол-во опытов, p-доверительная вероятность.

Погрешность прибора ∆х: Р=0,95 ,—предельная погрешность

Погрешность отсчета и округления  .

  ,

 

б) Погрешность косвенных измерений

     

,где        -- частная производная функции

                                                                   

по аргументу Xi при среднем

значении <Xi>,P=0,95  при

условии, что она для всех ∆Xi

     

4. Кинематика материальной точки.

Кинематические законы движения точки:

x=x(t);y=y(t);z=z(t)

Вектор перемещения

за время  

Если S= S(t) ,     ,   то  , где - единичный вектор касательной.

Направляющие косинусы вектора скорости:

Вектор среднего ускорения  <a>        

Вектор мгновенного ускорения

Тангенциальное ускорение точки

Нормальное ускорение:

Полное ускорение :            или             

4. Пример определения кинематических характеристик по стробоскопическим фотографиям.

На рис. 1 приведена стробоскопическая фотография движения материальной точки и указаны координатные оси.

  Задание 1: Найти кинематический закон движения точки.

Спроецируем точки на координатные оси с учетом масштаба и выпишем таблицу  значений координат точки, считая б что фотографирование началось при t=0

t, c

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

X, cм

0

3

6

8,9

11,9

14,9

17,8

20,8

23,7

Y, см

11,3

11

10,6

9,8

8,6

7

5

2,6

0

   Поскольку  в данном случае нет особого смысла много раз измерять  координаты, ибо мы будем получать все время один и тот же результат, то следует положить

   Приборная погрешность при измерении линейкой длиной 200 мм составляет

мм

   Погрешность отсчета и округления при округлении координат до 1 мм составляет

   Следовательно результирующая погрешность с учетом масштаба будет равна по формуле:

 

 На рисунке 2 изображена зависимость x(t)=at+b, где a,b –постоянные

X(t)=29,63t+0.04   ,

На рисунке 3 изображена зависимость

     ,

Вычисляем критерий значимости. Одним из наиболее удобных критериев

Является так называемый «критерий хи-квадрат» или критерий Пирсона

и вычисляется как частное суммирования и погрешности измерений взятых в квадрате.

Для х     , принимаем как  и вычислили  =0,52

Для y      , ==0.52

  Найдя дополнительно число степеней свободы  в нашем случае для х  n=12-3=9

Где 12—число измерений а  3 - это число параметров увеличенных на единицу

Для   y n=12-4=8

Зная   убедимся в справедливости гипотезы. Это производим с помощью таблицы.

Итак мы нашли кинематический закон движения

X(t)=29.63t+0.04         

Задание 2: Найти модуль скорости точки в середине интервала наблюдения и углы , составляемые с осями координат в этот момент. Изобразить вектор скорости на рис. 1.

Середина интервала наблюдения соответствует 

 x= x(t)=29.63t+0.04        y=

                         

 

 пологая t=0,04 с.  получим  

Рассчитаем погрешности:

             

                                                       где   

Задание 3: Найти ускорение точки в тот  же момент времени и углы , составляемые вектором ускорения с осями координат . Изобразить вектор ускорения на рис. 1

Так как величины от времени не зависят (т. t. const) , то такими они же будут  и при

Задание 4: Найти тангенциальное и нормальное ускорения точки  в тот же момент времени

Нормально ускорение,  характеризует быстроту изменения в данный момент направления вектора   и находится по формуле :

                   или       

Покажем на рис. 1 векторы  

Задание 5: Найти радиус кривизны траектории в точке, соответствующей тому же моменту времени.

Рис. 1

Рис. 2

Рис. 3


 

А также другие работы, которые могут Вас заинтересовать

12793. Позиционирование элементов 41.88 KB
  Позиционирование элементов При помощи CSSпозиционирования вы можете разместить элемент точно в нужном месте страницы. Вместе с поплавками см. лаб. № 11 позиционирование даёт вам большие возможности для создания точного и навороченного дизайна. В этом уроке мы обсуди
12794. Наслоение с помощью z-index (Слои) 21.24 KB
  Наслоение с помощью zindex Слои CSS оперирует в трёх измерениях высота ширина и глубина. Мы работали в двух измерениях на протяжении всех предшествующих уроков. В этом уроке мы научимся создавать слои/layers. Коротко говоря упорядочивать элементы так чтобы они перекрывали...
12795. Перспективы развития рынка клубного туризма в Крыму и Краснодарском крае 664.5 KB
  Исследовать историю развития клубного туризма. Определить современные направления клубного туризма. Представить анализ основных стран клубного туризма. Рассмотреть особенности организации клубного туризма. Изучить особенности внутреннего клубного туризма. Провести анализ клубного туризма в России
12796. ИЗУЧЕНИЕ ИНТЕРФЕРЕНЦИИ СВЕТА ОТ ДВУХ ЩЕЛЕЙ 170 KB
  ЛАБОРАТОРНАЯ РАБОТА № 30 ИЗУЧЕНИЕ ИНТЕРФЕРЕНЦИИ СВЕТА ОТ ДВУХ ЩЕЛЕЙ Цель работы Определение расстояния между щелями с помощью интерференционных полос в опыте Юнга. Введение Интерференцией называется явление сложения суперпозиции колебаний возбуж...
12797. ДИФРАКЦИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ 639 KB
  РАБОТА № 32 ДИФРАКЦИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ Цель работы Определение ширины щели и постоянной дифракционных решеток по дифракционным картинам на экране наблюдения. Введение Дифракцией называют все отклонения от прямолинейного распространения света. На...
12798. ПОЛЯРИЗАЦИЯ СВЕТА. Естественный и поляризованный свет 296 KB
  ЛАБОРАТОРНАЯ РАБОТА № 35 ПОЛЯРИЗАЦИЯ СВЕТА Естественный и поляризованный свет Свет является электромагнитной волной т.е. волной в которой происходят колебания векторов и вектор напряженности электрического поля вектор напряженности магнитного поля...
12799. Кодирующее устройство для кода Файра 272.13 KB
  Расчётнопояснительная записка к курсовой работе по дисциплине: Передача информации Тема: Кодирующее устройство для кода Файра. Аннотация. Курсовая работа по курсу Передача информации. Преподаватель: Каевченко Михаил Антонович. Авт
12800. ПРЕДСТАВЛЕНИЕ И ЗАПИСЬ ДВОИЧНЫХ ЧИСЕЛ 687 KB
  Лабораторная работа № 1 ПРЕДСТАВЛЕНИЕ И ЗАПИСЬ ДВОИЧНЫХ ЧИСЕЛ Цель работы: Изучить правила перевода чисел из одной системы исчисления в другую. Изучить способы кодирования двоичных чисел. Изучить формы представления двоичных чисел а также способы перевода одно
12801. ИЗУЧЕНИЕ РАБОТЫ ЛОГИЧЕСКИХ ЭЛЕМЕНТОВ. ПРОЕКТИРОВАНИЕ КОМБИНАЦИОННЫХ ЛОГИЧЕСКИХ СХЕМ 477.5 KB
  Лабораторная работа № 2 ИЗУЧЕНИЕ РАБОТЫ ЛОГИЧЕСКИХ ЭЛЕМЕНТОВ. ПРОЕКТИРОВАНИЕ КОМБИНАЦИОННЫХ ЛОГИЧЕСКИХ СХЕМ Цель работы: Изучить работу базовых логических элементов и основ построения различных комбинационных схем. Краткие теоретические сведения В ЭВМ