50390

Изучение основ теории погрешностей и методов обработки экспериментальных результатов. Определение кинематических характеристик по стробоскопическим фотографиям

Лабораторная работа

Физика

Экспериментальные точки не должны сливаться друг с другом; Масштабы вдоль всей оси следует выбирать так чтобы основная часть графика имела наклон близкий к углу 45 и лежала в средней части между осями. Построение графиков: на график наносятся все полученные точки через точки проводится наилучшая плавная кривая. Найти модуль скорости точки в середине интервала наблюдения и углы составляемые вектором скорости с осями координат в этот момент времени. Найти ускорение точки в тот же момент времени Изобразить вектор ускорения.

Русский

2014-01-21

1.07 MB

2 чел.

  1.  Цель работы: Изучение основ теории погрешностей и методов обработки экспериментальных результатов. Определение кинематических характеристик по стробоскопическим фотографиям.
  2.  Приборы и принадлежности: стробоскопические фотографии, линейка, карандаш.
  3.  Основы теории погрешностей и методы обработки экспериментальных результатов:

Теоретические сведения

Измерения. Погрешности измерений.

Измерение – нахождение значений физических величин, характеризующих явление, опытным путём с помощью специальных технических средств. В учебных лабораториях чаще всего используется два вида измерений: прямые и косвенные.

Прямыми называются измерения, в которых значение измеряемой величины находится непосредственно из отсчёта по шкале прибора.

Косвенными называются измерения, при которых интересующая величина находится как функция одной или нескольких прямым образом измеряемых величин.

Какими бы не были точными измерения, всегда полученное значение отличается от фактического.

Ошибкой измерения называется разность

Δхизм – хист.

Ошибки измерений систематизируются по двум основным признакам: месту возникновения и характеру проявления, следующим образом:

Основная задача физического измерения состоит в том, чтобы указать интервал, внутри которого с заданной наперёд вероятностью находится истинное значение искомой величины.

Графическая обработка результатов

Выбор координатных осей по оси абсцисс всегда откладывается аргумент, а по оси ординат – функция.

Выбор масштаба. При выборе масштаба необходимо учитывать следующие правила:

  1.  Шкалы на всех осях должны легко читаться, поэтому одна клеточка на миллиметровой бумаге должна соответствовать удобному числу единиц  измеряемой величины.
  2.  Экспериментальные точки не должны сливаться друг с другом;
  3.  Масштабы вдоль всей оси следует выбирать так, чтобы основная часть графика имела наклон близкий к углу 45° и лежала в средней части между осями.
  4.  Если на графике необязательно иметь начало координат, начало и конец разметки на координатных осях должны соответствовать минимальным и максимальным значениям аргумента и функции.

Построение графиков: на график наносятся все полученные точки, через точки проводится наилучшая плавная кривая. Непосредственное соединение точек ломанной кривой не допускается

Нанесение ошибок на график: Ошибка в экспериментальном значении указывается в виде крестиков, размеры которых в выбранном масштабе дают удвоенное значение погрешности в этом масштабе.

                     Рис 2.

Основные правила приближённых вычислений.

Общее правило – при вычислении сумм, разностей, произведений, частный результат не должен содержать больше значащих цифр, чем наименее точное из всех вычислений.

При вычислении функций ограничиваются числом значащих цифр аргумента. Если результат вычисления является промежуточным и используются при дальнейшем вычислении, нужно сохранить в нем на 1 значащую цифру больше чем это требуется предыдущим правилом, если вычисляемое выражение входят постоянные типа π, γ, константы приборов и т.п., следует для них брать значащих цифр на одну больше, чем в самом неточном из участвующих в выражении чисел. Это делается для того, чтобы вычисления с постоянными не вносили дополнительной  ошибки.

Если это по каким-либо причинам не возможно, то соответствующую константу в выражении для физической величины следует рассматривать наравне с другими переменными и в окончательное выражение для физической величины будет входить в погрешность соответствующие константы.

Абсолютную погрешность следует всегда выражать в тех же единицах, что и саму измеряемую величину.

Вычисленные погрешности прямых и косвенных измерений должны округляться до 1-й значащей цифры, за исключением тех случаев, когда она равна 1 – в этом случае сохраняется две значащих цифры, причём вторая из них округляется до 5-ти.

Ход работы

Задание №1 Определение кинематических характеристик по стробоскопическим фотографиям

Найти кинематический закон движения.

Рисунок 3.

Таблица 1. Координаты точек на стробоскопической фотографии

t, c

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

x, cм

0

30

60

90

120

160

180

210

240

y, см

0

3

7

16

28

45

65

88

115

                                                                            

Рисунок 4. График зависимости Х(t)        Рисунок 5. График зависимости Y(t)                                

На рисунке 4 изображена зависимость Х(t) = 300.00t + 30.00, а на рисунке 5 зависимость y(t) = 183.3 * t2 – 3.1t + 0.5.

Таким образом, мы вывели кинематический закон движения.

Задание 2. Найти модуль скорости точки в середине интервала наблюдения и углы, составляемые вектором скорости с осями координат в этот момент времени. Изобразить вектор скорости на рис. 3.

Z = a*b+с

∆X = ((dz/da)2* ∆a + (dz/db)2* ∆b+(dz/dc)2* ∆c)1/2 = (b2*∆a+a2*∆b+∆c)1/2;

∆X =( ∆x2разб.+ ∆x2окр+∆x2приб.)1/2;

∆Vy =((dVy/dC0 * ∆C0)2 * (dVy/dt * ∆t)2*(dVy/dC1 * ∆C1)2)1/2 =

=((2t*∆C0)2 + (2C0 *  ∆t)2 + ∆C12)1/2

Vy = 2 * 183,3 * t - 3,1;   t = 0,4 с.

Vy = 143,54 м\с;

Vx = 300,00 м\с;

V = (Vx2 + Vy2)1\2;

V = 332,57  м\с;

cosα = Vx \ V; α = 25,56

cosβ = Vy \ V; β = 90 – α = 64,44

∆С0 = 0.1\2 = 0,05;                                                    

∆С1 = 0,1\2 = 0,05;

Vx = 0,005 см\с;   ∆Vy = ((2*0,4*0,05)2 + (2*183,3*0,005)2 + 0,052)1\2 = (0,0016 + 3,36 + 0,0025)1/2 = 1,83 см/с;

∆α = (-1\((1 – cos2 α)1/2 – 1/Vx) * ∆Vx)2 = 6,8*10-5;

∆β = (-1\((1 – cos2 β )1/2 – 1/Vy) * ∆Vy)2 = 1,05

V = (∆Vx2 + ∆Vy2)1/2 = 1,83

Задание 3. Найти ускорение точки в тот же момент времени

Изобразить вектор ускорения.

Находим ах, аy, a.

ах = dVх /dt = 0; аy = dVy/dt = 366,6 см/с2;  

а = (ах2 + аy2)1/2;

а = 366,6 см/с2;

Поскольку же величины от времени не зависят, то такими же они и будут при  t=0,40 c 

Задание 4. Найти тангенсальное и нормальное ускорение точки в тот же момент времени.

аτ =( Vx * ax + Vy * ay)/V= (300*366 + 143,54)/ 332,57 = 330,59 см/с2;

аn = a - аτ;

аn = (a2- аτ2)1/2=157,05 см/с2;

Задание 5. Найти радиус кривизны траектории в точке, соответствующей тому же моменту времени.

R = V2/an = 332,57 2/ 157,05 = 704,25 см.

Вывод:   В ходе лабораторной работы были изучены основы теории погрешностей и методы обработки экспериментальных результатов, а так же  определены кинематические характеристики по стробоскопическим фотографиям.


 

А также другие работы, которые могут Вас заинтересовать

72724. Курс химии: Учебно-методическое пособие 1.44 MB
  В практикуме представлены лабораторные работы для тринадцати лабораторных работ студентам МГУПИ, изучающим курс химии по всем формам обучения на всех специальностях, на которых это предусмотрено учебным планом в соответствии с Государственным стандартом на специальность.
72725. ТРЕХФАЗНЫЙ АСИНХРОННЫЙ ДВИГАТЕЛЬ С КОРОТКОЗАМКНУТОЙ РОТОРНОЙ ОБМОТКОЙ 96.5 KB
  Цель работы: изучение устройства, способов пуска, опытное определение параметров и исследование рабочих характеристик асинхронного двигателя. Программа работы Ознакомление с заданием. Исследование пусковых режимов работы двигателя: при прямом пуске; с переключением статорной обмотки...
72726. ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК СИНХРОННОГО ГЕНЕРАТОРА 93 KB
  Цель работы: Изучение конструкции синхронного генератора и экспериментальное определение его характеристик и параметров. Программа работы Ознакомиться с конструкцией генератора и схемой испытательного стенда. Снять характеристику холостого хода генератора...
72727. ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА С ПАРАЛЛЕЛЬНЫМ И СМЕШАННЫМ ВОЗБУЖДЕНИЕМ 298.5 KB
  Изучение устройства двигателя постоянного тока, условий его пуска, реверсирования и исследование эксплуатационных свойств. Ознакомиться с лабораторной установкой. Записать паспортные (номинальные) данные электродвигателя.
72728. ИССЛЕДОВАНИЕ ПОЛУПРОВОДНИКОВОГО СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ 290.5 KB
  Полупроводниковые стабилизаторы напряжения используются в основном для питания электронной аппаратуры. При их разработке нужно обеспечить две группы показателей: 1 максимальное выходное напряжение заданный диапазон регулирования выходного напряжения допустимую относительную...
72730. Создание простейшего прикладного приложения: калькулятор, просмоторщик рисунков, графический редактор, текстовый редактор, медиаплеер 4.9 MB
  Цель работы. Разработка приложений использующих главное меню формы всплывающего меню строки состояния панели инструментов быстрых кнопок с картинками подсказок к кнопкам а также стандартных диалогов открытия и сохранения файлов на примере создания приложения для просмотра графических файлов точечных рисунков.
72732. Изучение компонентов среды С++ Builder 6: TStringGrid (таблица строк), TMainMenu. Работа с массивами данных 264 KB
  Получение навыков работы с компонентами TStringGrid (таблица строк), TMainMenu (главное меню), программирования ввода матрицы смежности графа с помощью компоненты TStringGrid, разработки классов для решения задач на графах.