50390

Изучение основ теории погрешностей и методов обработки экспериментальных результатов. Определение кинематических характеристик по стробоскопическим фотографиям

Лабораторная работа

Физика

Экспериментальные точки не должны сливаться друг с другом; Масштабы вдоль всей оси следует выбирать так чтобы основная часть графика имела наклон близкий к углу 45 и лежала в средней части между осями. Построение графиков: на график наносятся все полученные точки через точки проводится наилучшая плавная кривая. Найти модуль скорости точки в середине интервала наблюдения и углы составляемые вектором скорости с осями координат в этот момент времени. Найти ускорение точки в тот же момент времени Изобразить вектор ускорения.

Русский

2014-01-21

1.07 MB

3 чел.

  1.  Цель работы: Изучение основ теории погрешностей и методов обработки экспериментальных результатов. Определение кинематических характеристик по стробоскопическим фотографиям.
  2.  Приборы и принадлежности: стробоскопические фотографии, линейка, карандаш.
  3.  Основы теории погрешностей и методы обработки экспериментальных результатов:

Теоретические сведения

Измерения. Погрешности измерений.

Измерение – нахождение значений физических величин, характеризующих явление, опытным путём с помощью специальных технических средств. В учебных лабораториях чаще всего используется два вида измерений: прямые и косвенные.

Прямыми называются измерения, в которых значение измеряемой величины находится непосредственно из отсчёта по шкале прибора.

Косвенными называются измерения, при которых интересующая величина находится как функция одной или нескольких прямым образом измеряемых величин.

Какими бы не были точными измерения, всегда полученное значение отличается от фактического.

Ошибкой измерения называется разность

Δхизм – хист.

Ошибки измерений систематизируются по двум основным признакам: месту возникновения и характеру проявления, следующим образом:

Основная задача физического измерения состоит в том, чтобы указать интервал, внутри которого с заданной наперёд вероятностью находится истинное значение искомой величины.

Графическая обработка результатов

Выбор координатных осей по оси абсцисс всегда откладывается аргумент, а по оси ординат – функция.

Выбор масштаба. При выборе масштаба необходимо учитывать следующие правила:

  1.  Шкалы на всех осях должны легко читаться, поэтому одна клеточка на миллиметровой бумаге должна соответствовать удобному числу единиц  измеряемой величины.
  2.  Экспериментальные точки не должны сливаться друг с другом;
  3.  Масштабы вдоль всей оси следует выбирать так, чтобы основная часть графика имела наклон близкий к углу 45° и лежала в средней части между осями.
  4.  Если на графике необязательно иметь начало координат, начало и конец разметки на координатных осях должны соответствовать минимальным и максимальным значениям аргумента и функции.

Построение графиков: на график наносятся все полученные точки, через точки проводится наилучшая плавная кривая. Непосредственное соединение точек ломанной кривой не допускается

Нанесение ошибок на график: Ошибка в экспериментальном значении указывается в виде крестиков, размеры которых в выбранном масштабе дают удвоенное значение погрешности в этом масштабе.

                     Рис 2.

Основные правила приближённых вычислений.

Общее правило – при вычислении сумм, разностей, произведений, частный результат не должен содержать больше значащих цифр, чем наименее точное из всех вычислений.

При вычислении функций ограничиваются числом значащих цифр аргумента. Если результат вычисления является промежуточным и используются при дальнейшем вычислении, нужно сохранить в нем на 1 значащую цифру больше чем это требуется предыдущим правилом, если вычисляемое выражение входят постоянные типа π, γ, константы приборов и т.п., следует для них брать значащих цифр на одну больше, чем в самом неточном из участвующих в выражении чисел. Это делается для того, чтобы вычисления с постоянными не вносили дополнительной  ошибки.

Если это по каким-либо причинам не возможно, то соответствующую константу в выражении для физической величины следует рассматривать наравне с другими переменными и в окончательное выражение для физической величины будет входить в погрешность соответствующие константы.

Абсолютную погрешность следует всегда выражать в тех же единицах, что и саму измеряемую величину.

Вычисленные погрешности прямых и косвенных измерений должны округляться до 1-й значащей цифры, за исключением тех случаев, когда она равна 1 – в этом случае сохраняется две значащих цифры, причём вторая из них округляется до 5-ти.

Ход работы

Задание №1 Определение кинематических характеристик по стробоскопическим фотографиям

Найти кинематический закон движения.

Рисунок 3.

Таблица 1. Координаты точек на стробоскопической фотографии

t, c

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

x, cм

0

30

60

90

120

160

180

210

240

y, см

0

3

7

16

28

45

65

88

115

                                                                            

Рисунок 4. График зависимости Х(t)        Рисунок 5. График зависимости Y(t)                                

На рисунке 4 изображена зависимость Х(t) = 300.00t + 30.00, а на рисунке 5 зависимость y(t) = 183.3 * t2 – 3.1t + 0.5.

Таким образом, мы вывели кинематический закон движения.

Задание 2. Найти модуль скорости точки в середине интервала наблюдения и углы, составляемые вектором скорости с осями координат в этот момент времени. Изобразить вектор скорости на рис. 3.

Z = a*b+с

∆X = ((dz/da)2* ∆a + (dz/db)2* ∆b+(dz/dc)2* ∆c)1/2 = (b2*∆a+a2*∆b+∆c)1/2;

∆X =( ∆x2разб.+ ∆x2окр+∆x2приб.)1/2;

∆Vy =((dVy/dC0 * ∆C0)2 * (dVy/dt * ∆t)2*(dVy/dC1 * ∆C1)2)1/2 =

=((2t*∆C0)2 + (2C0 *  ∆t)2 + ∆C12)1/2

Vy = 2 * 183,3 * t - 3,1;   t = 0,4 с.

Vy = 143,54 м\с;

Vx = 300,00 м\с;

V = (Vx2 + Vy2)1\2;

V = 332,57  м\с;

cosα = Vx \ V; α = 25,56

cosβ = Vy \ V; β = 90 – α = 64,44

∆С0 = 0.1\2 = 0,05;                                                    

∆С1 = 0,1\2 = 0,05;

Vx = 0,005 см\с;   ∆Vy = ((2*0,4*0,05)2 + (2*183,3*0,005)2 + 0,052)1\2 = (0,0016 + 3,36 + 0,0025)1/2 = 1,83 см/с;

∆α = (-1\((1 – cos2 α)1/2 – 1/Vx) * ∆Vx)2 = 6,8*10-5;

∆β = (-1\((1 – cos2 β )1/2 – 1/Vy) * ∆Vy)2 = 1,05

V = (∆Vx2 + ∆Vy2)1/2 = 1,83

Задание 3. Найти ускорение точки в тот же момент времени

Изобразить вектор ускорения.

Находим ах, аy, a.

ах = dVх /dt = 0; аy = dVy/dt = 366,6 см/с2;  

а = (ах2 + аy2)1/2;

а = 366,6 см/с2;

Поскольку же величины от времени не зависят, то такими же они и будут при  t=0,40 c 

Задание 4. Найти тангенсальное и нормальное ускорение точки в тот же момент времени.

аτ =( Vx * ax + Vy * ay)/V= (300*366 + 143,54)/ 332,57 = 330,59 см/с2;

аn = a - аτ;

аn = (a2- аτ2)1/2=157,05 см/с2;

Задание 5. Найти радиус кривизны траектории в точке, соответствующей тому же моменту времени.

R = V2/an = 332,57 2/ 157,05 = 704,25 см.

Вывод:   В ходе лабораторной работы были изучены основы теории погрешностей и методы обработки экспериментальных результатов, а так же  определены кинематические характеристики по стробоскопическим фотографиям.


 

А также другие работы, которые могут Вас заинтересовать

25146. Р. Дж. Колінгвуд Ідея історії 29 KB
  Колінгвуд Ідея історії Ідея Історії€ безперечно найвідоміша книга Колінгвуда. Колінгвуд вважає що 4 тисячі років тому попередники нашої цивілізації не володіли тим що ми називаємо ідеєю історії. Можна виокремити 4 основні характеристики історії критерії історичної свідомості історичності як такої за Колінгвудом: 1. науковий характер історії.
25147. Поняття та ідеї як форми мислення 27.5 KB
  Копніна при визначенні логіки наукового дослідження проведено визначення поняття та ідей як форм наукового дослідження. Поняття характеризується як структурно складене утворення основу якого складають предмет думки та ознаки що його приписуються. Складеність поняття виявляє можливість відокремлення ознак від одного предмету та встановлення їх відношення до іншого предмету. Оперування поняттями дозволяє через визначення ознак формувати уявлення про ідеальний предмет як носій даних ознак.
25148. Лінійні і циклічні моделі історії 27.5 KB
  Лінійні і циклічні моделі історії Будьяке дослідження історії передбачає вирішення проблем природи історичного процесу його структури рушійних сил напрямку розвитку. Спроби осмислення послідовності наступності конкретних історичних періодів дозволили створити деякі узагальнені структуровані цілісні образи історії. Лінійні моделі це образ історії як незворотньої послідовності подій; геометричним аналогом цієї моделі спрямованості історії є пряма. Найчастіше зустрічається прогресивна лінійна модель історії згідно з якою поступ прогрес...
25149. Аналітична філософія 23 KB
  У широкому сукупність напрямків що характеризуються підвищеною увагою до мови а саме застосуванням методів логічного та лінгвістичного аналізу мови для вирішення філософських проблем. Головні завдання: дослідження мови з метою виявлення структури думки досягнення прозорого співвідношення мови та реальності чітке розмежування значимих та пустих висловлювань осмислених та беззмістовних фраз тощо. Рассел зосередився на аналітичних можливостіх символічної логіки і дослідженню основ математикию Мур же займався аналізом філософських понять...
25150. Поняття проблеми в сучасній методології науки 29.5 KB
  Поняття проблеми в сучасній методології науки Чуйко В. Саме ситуація проблеми є умовою та джерелом самого пізнання оскільки саме пізнання провокується незнанням. Гносеологічне значення поняття проблеми в науці полягає в тому що через неї розгортається висхідне фундаментальне протиріччя процесу пізнання: протиставлення наявного вже досягнутого рівня пізнання і нового.
25151. Поняття трансцедентальної філософії у Канта 28.5 KB
  Виокремлює три здатності людської душі яким відповідають три його критики здатність пізнання критика чистого розуму здатність бажання критика практичного розуму здатність до почуття задоволення і незадоволення критика здатності до судження. В пізнанні не наше уявлення узгоджується з предметом а предмет узгоджується з нашим уявленням тобто людина сама конструює предмет свого пізнання. Трансцедентальне всяке пізнання яке займається не стільки предметами скільки видами нашего пізнання предметів оскільки це пізнання є можливим...
25152. Проблема інтерсуб’єктивності в сучасній філософії 27 KB
  Проблема інтерсубєктивності в сучасній філософії Інтерсубєктивність умова взаємодії та передачі знання; значимість пізнавального досвіду однієї людини для іншої. Інтерсубєктивність як спільний досвід.
25153. Структуралістська парадигма в сучасному пізнанні 29 KB
  уявлення про позасвідомий характер структури Струкутра інваріантно статичне ціле утворене взаємозвязком його елементів таким чином що кожний залежить від інших і може зявитися лише завдяки відношенням з іншими елементами. Для структури характерним є кінцева кількість складових і правил їх комбінування які піддатні систематизації і інвентаризації. Дихотомія структури і твору: структура мова знаходиться в конфлікті з твором мовленням який є продуктом індивідуального акту волі і розуму. Примат структури над елементами людина лише...
25154. Вірогідне та достовірне знання 28.5 KB
  В науковому пізнанні поняття достовірне знання виконує дві основні функції: оціночну та методологічну. Оціночна функція поняття достовірність як показано в роботі Обєктивне знання К.Поппера полягає у визначенні відношення одного знання до іншого.