50410

Изучение законов динамики вращательного движения твердого тела вокруг неподвижной оси на маятнике обербека

Лабораторная работа

Физика

В этой модели считается что трение в оси блока 8 отсутствует этот блок невесом а момент сил трения Μтр в оси блока с крестовиной не зависит от угловой скорости вращения. В этих условиях ускорение груза массой m постоянно на всем отрезке Н и равно: где r – радиус намотки I – момент инерции блока с крестовиной r=r1 либо r2 I определяется положением грузов массой m´ каждый и моментом инерции блока без грузов I0.1 Проверка независимости момента сил трения Μтр от угловой скорости...

Русский

2014-01-21

83.5 KB

1 чел.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

«БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра физики

 

Лабораторная работа М-5

Изучение законов динамики вращательного движения

твердого тела вокруг неподвижной оси на маятнике обербека

 

       

                                                      Выполнил:

                                                                         Студент группы Э-33

                                                                            Атян Вилямин Маркович

                                                 Проверил:

                                                    Онищук В. Н.

Брест 2005г.

1. Цель работы:

Экспериментальная проверка зависимостей между физическими величинами, характеризующими вращение твердого тела вокруг неподвижной оси.

2. Приборы и принадлежности: маятник Обербека, комплект перегрузов,  

                                                                   миллисекундомер.

Ход работы

Модель I. В этой модели считается, что трение в оси блока (8) отсутствует, этот блок невесом, а момент сил трения Μтр, в оси блока с крестовиной не зависит от угловой скорости вращения. В этих условиях ускорение груза массой m постоянно на всем отрезке  Н и равно:

где r – радиус намотки, I – момент инерции блока с крестовиной (r=r1 либо r2, I  - определяется положением грузов массой m´ каждый и моментом инерции блока без грузов I0).

Задание 1.1  Проверка независимости момента сил трения Μтр  от угловой

                      скорости вращения блока

Если Μтр  не зависит от угловой скорости вращения, то при различных Н правая часть формулы (1.1) постоянна и зависимость (t2) от H должна быть линейной:

       

а) проведите измерения ti при различных  Hi 

Начальная высота падения тела (см)

47

45.5

44

42.5

41

39.5

38

36.5

Время падения (с)

2.602

2.570

2.522

2.508

2.443

2.401

2.358

2.281

2.602

2.585

2.504

2.485

2.414

2.368

2.367

2.310

2.598

2.582

2.510

2.491

2.446

2.365

2.341

2.317

2.610

2.574

2.541

2.485

2.425

2.411

2.369

2.296

2.616

2.569

2.530

2.487

2.441

2.388

2.352

2.309

<t>, c 

2.606

2.576

2.521

2.491

2.434

2.387

2.357

2.303

m=53g

Зависимость t2 от H линейная

б) более строгого рассмотрения требует привлечение метода наименьших квадратов (МНК) и критериев согласия, например Х2 – критерия Пирсона.

Обозначим в (1.2) t2=y, Н=х, 2/а=k. Тогда y=kx

В приложении III показано, что наилучшее в смысле МНК значение коэффициента k для зависимости имеет вид:

=8.747 см   

t2=14.51*H

(согласно компьютерным вычислениям)

Задание 1.3  Определение момента инерции ступенчатого блока с   

                      крестовиной и момента сил трения

Измерим время падения грузов масс m1=53гр  , m2=94гр и m3=135гр при радиусах r1=5.0см и r2=8.4см с высоты Н=47см и занесём в таблицу.  

Н=48см   m1=53г          Н=48см m2=94           Н=48см  m3=135г

m1

m2

m3

r1

r2

r1

r2

r1

r2

1

8.702

8.66

6.807

6.451

2.600

2.515

2

8.686

8.502

6.826

6.460

2.604

2.542

3

8.713

8.559

5.819

6.493

2.600

2.566

4

8.682

8.516

6.793

6.403

2.612

2.513

5

8.698

8.528

6.804

6.447

2.616

2.581

< t >

8.696

8.554

6.810

6.410

2.606

2.543

Найдём по следующим формулам I1 , I2, I3 и Мтр1тр2тр3:

=

Вывод: экспериментально проверила зависимость между физическими величинами, характеризующими вращение твёрдого тела вокруг неподвижной оси (I и Мтр) и рассчитала их.

EMBED Equation.3  


 

А также другие работы, которые могут Вас заинтересовать

42188. ИССЛЕДОВАНИЕ АПЕРИОДИЧЕСКОГО И КОЛЕБАТЕЛЬНОГО РАЗРЯДОВ КОНДЕНСАТОРА 325.5 KB
  Исследование процесса разряда конденсатора на активное сопротивление. Определение влияния на разряд конденсатора значения активного сопротивления. Опытное определение величины емкости конденсатора по осциллограмме. Исследование колебательного разряда конденсатора.
42189. ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ С НЕСИНУСОИДАЛЬНЫМИ НАПРЯЖЕНИЯМИ И ТОКАМИ 185 KB
  Разложение несинусоидальной кривой графо-аналитическим способом в ряд Фурье и определение коэффициентов характеризующих несинусоидальную кривую. Определение влияния характера цепи R; RL; RC на форму кривой несинусоидального тока при подключении ее к источнику несинусоидального напряжения. Определение ординат несинусоидальной кривой в m дискретных точках.10 Затем находят соответствующие ординаты кривой f1ωt; f2ωt; f3ωt и заменяют интегралы...
42191. Принцип работы волоконно-оптического датчика (ВОД) магнитного поля и электрического тока 862 KB
  Однако применение различных ВОД электромагнитных полей сдерживается наличием у них относительно высокой чувствительности коэффициента преобразования датчика к температуре обусловленной температурным дрейфом характеристик вещества чувствительного элемента. Чувствительность ВОД к магнитному полю и электрическому току определяется коэффициентом преобразования чувствительного элемента ЧЭ который пропорционален углу Фарадея . Однако увеличение L в Bi12SiO20 может привести к проявлению влияния ряда нелинейных эффектов на магнитооптическую...
42192. Моделирование процесса измерения основных параметров волоконно-оптических трасс по рефлектометрическим данным 291.5 KB
  Если среда в которой распространяется импульс в данном случае оптическое волокно содержит неоднородности то на рефлектограмме появятся изломы и всплески. Как было сказано выше если неоднородности в волокне отсутствуют то рефлектограмма будет представлять из себя прямую с некоторым наклоном. Ступеньки говорит о наличии неоднородности на которой происходит поглощение мощности светового импульса1. Обычно такие неоднородности наблюдаются в местах сварки оптических волокон.
42193. Электрическая цепь с одним источником питания и смешанным соединением элементов 130 KB
  Основные теоретические положения Основными элементами любой электрической цепи являются: а источники электрической энергии электромашинные генераторы аккумуляторные батареи термоэлементы и т. С помощью закона Ома описывается связь между током напряжением и сопротивлением заданного участка цепи . Согласно 1му закону Кирхгофа алгебраическая сумма токов сходящихся в любом узле цепи равна нулю т. Так как при параллельном соединении все элементы находятся под одним и тем же напряжением то используя закон Ома это уравнение можно...
42194. Вимірювання опорів на постійному струмі 115 KB
  Ознайомлення з основними видами та методами вимірювання активних електричних опорів на постійному струмі. Дослідження методичних похибок основних методів вимірювання опорів та шляхи їх усунення. Завдання на вимірювання опорів кожен студент одержує від викладача.
42195. Калібрування і повірка засобів вимірювання тиску 86 KB
  1 Мета роботи Ознайомитись з будовою і принципом дії технічних засобів для вимірювання тиску. Набути практичних навиків при повірці і калібруванні систем вимірювання тиску.2 Програма роботи Під час заняття студент повинен самостійно ознайомитись з будовою і принципом дії технічних засобів які використовуються в системах для вимірювання тиску.
42196. Обробка результатів прямих багаторазових вимірювань 263.5 KB
  Вивчення методів і набуття практичних навиків в обробці результатів багаторазових вимірювань які містять випадкові похибки. Програма роботи Під час роботи студенти вимірюють активні опори за допомогою універсального цифрового вимірювача Ф 480 так щоб досягти при цьому одержання найбільш точних результатів шляхом визначення і виключення систематичних і випадкових похибок вимірювань параметра з рівноточними значеннями відліку. З цією метою використовується методика багатократного вимірювання однієї і тієї ж величини з...