50418

Определение моментов инерции твёрдых тел и проверка теоремы Гюгенса-Штейнера

Лабораторная работа

Физика

Цель работы: Определение моментов инерции твёрдых тел и проверка теоремы Гюгенса-Штейнера. Приборы и принадлежности: крутильный маятник, набор тел. Ход работы: I)Определение моментов инерции длинного стержня: 1)Период колебания рамки без закреплённых в ней тел

Русский

2014-01-23

250.5 KB

0 чел.

Цель работы: Определение моментов инерции твёрдых тел и проверка теоремы Гюгенса-  

                         Штейнера.

Приборы и принадлежности: крутильный маятник, набор тел.

Ход работы:

I) Определение моментов инерции длинного стержня:

   1)  Период колебания рамки без закреплённых в ней тел:

           а) 11,464 с

           б) 11,459 с

           в) 11,471 с

      с

2)   Период колебания рамки с закреплённым  ней эталонным кубом.

       а) 14,356 с

          б) 14,358 с

          в) 14,352 с

  с

    а) 14,359 с

    б) 14,353 с

    в) 14,356 с

  с

    а) 14,375 с

    б) 14,376 с

    в) 14,380 с

  с

с

3) Момент инерции эталонного куба:

м – сторона эт. куба

кг – масса эт. куба

кг

4) Закрепим в рамке стержень.

    а) 20,165 с

    б) 20,174 с

    в) 20,162 с

    с

    

При изменении ориентации стержня:

    а) 20,177 с

    б) 20,166 с

    в) 20,158 с

    с

    Период Т практически не зависит от угла между плоскостью рамки и стержня.

5)    Найдите момент инерции срежня Iст поформуле:

 ;

Момент инерции стержня:

     0,0014737

6) Найдём теоретическое выражение для момента инерции стержня :

   , где

L = 0,24 м – длина стержня

= 0,3 кг – масса стержня

= кг

D = 0,014 м

Причины, по которым указанная разность может выходить за пределы погрешностей экспериментального определения :

- индивидуальные особенности экспериментатора;

- несовершенство установки, средств измерения.

7) Если стержень считать пренебрежительно тонким, то теоретическое выражение для момента инерции стержня для той же оси имеет вид:

Значение лучше согласовывается с экспериментальным значением =0,0014737

II) Проверка теоремы Гюгенса-Штейнера:

1)

 D' = 0,039 м

 h'          h' = 0,019 м

 

  d              D'

                               

2) Найдём период колебаний конструкции из стержня и двух тел:

 = 4,5 см

с

- момент инерции.

Момент инерции одного тела:

;

Для расчёта упростим формулу:

Расчитаем :

с

с

кг

м

=

=

3)

а) 6 см

с

б) см

с

в) см

с

г) см

с

4) Определим моменты инерции каждого из тел:

- экспериментальное значение момента инерции одного исследуемого тела в случае, когда ось проходит через центр масс (т.е. для d=0).

5) В силу предположений

Выполняется теорема Гюгенса-Штейнера:

, где

- момент инерции тела относительно оси колебаний

- момент инерции тела относительно оси проходящей через центр масс и параллельно оси колебаний

m – масса тела

d – расстояние между указанными осями

Изобразим координатную плоскость. По оси абсцисс откладываются значения переменной x=, по оси ординат y=. Нанесённые точки должны лежать на прямой  . Однако, они лежат на прямой не совсем точно.

x,

2,025

3,6

5,625

8,1

11,025

y,

5,703

8,721

12,262

16,755

6) С помощью МНК находим наилучшую прямую, соответствующую экспериментальным точкам. Параметры этой прямой, входящие в формулу , вычисляются по формулам:

где

где n – общее число значений, n=6.

м

Вычислим

n – число степеней свободы:

n = 6-3 = 3.

По таблице определяем доверительную вероятность: P=100%

От сюда следует, что закон Гюгенса-Штейнера полностью соблюдается.

III) Проверка согласованности экспериментальных значений и.

Вычислим момент инерции длинного тонкого однородного стержня относительно оси, проходящей через центр масс стержня и ему перпендикулярной.

m – масса стержня

- длинна стержня

- линейная плотность стержня

Рассмотрим элемент стержня dx, находящийся на расстоянии x от оси, проходящей через центр масс.

Масса элемента:

Момент инерции элемента:

Для любой плоской фигуры сумма моментов инерции относительно двух взаимноперпендикулярных осей, лежащих в плоскости пластинки, равна моменту инерции относительно оси, перпендикулярной  плоскости пластинки и проходящей через точку пересечения осей в плоскости пластинки.

Вывод: В ходе выполнения данной лабораторной работы, определили моменты инерции твёрдых тел и проверили теорему Гюгенса-Штейнера.

    Министерство Образования Республики Беларусь

               УО Брестский Государственный Технический Университет

           Кафедра Физики

          Лабораторная работа №6

            по Физике

Тема: «Определение моментов инерции твёрдых тел с помощью крутильного маятника».

Выполнил:

студент группы 1 ИИ-1

Лахмицкий А.А.

Проверил:

Янусик И.С.

Брест 2004г.


 

А также другие работы, которые могут Вас заинтересовать

20517. Словник даних. БНФ-нотація 41 KB
  БНФнотація. БНФнотация позволяет формально описать расщепление объединение потоков. Это определение может быть следующим: X=ABC; Y=AB; Z=BC Такие определения хранятся в словаре данных в так называемой БНФстатье. БНФстатья используется для описания компонент данных в потоках данных и в хранилищах.
20518. Специфікації керування. Побудова діаграм переходів станів. Символи STD. Таблиці і матриці переходів 30 KB
  Символи STD. Діаграми переходів станів STD відносять до групи специфікацій управління які призначені для моделювання і документування аспектів системи повязаних із часом або реакцією на події. STD подають процес функціонування системи як послідовність переходів з одного стану до іншого. До складу STD входять такі структурні одиниці:Стан може визначатися як стійкі внутрішні умови системи.
20519. Шаблони функцій (передача типу в функцію у вигляді параметру). Перевизначення шаблонів функцій. Передача у шаблони додаткових аргументів 27.5 KB
  Шаблони механізм C який дозволяє створювати узагальнені функції і класи які працюють з типами даних які передаються в параметрі. Можна наприклад створити функцію яка сортує масив цілих чисел а можна створити шаблон функції який буде сортувати масиви будьяких даних над якими задані операції порівняння і присвоєння. Шаблон функції виглядає так: template class Ідентифікатор_типу Тип_результату Назва_функціїСписок_параметрів { Тіло функції } Параметр Ідентифікатор_типу задає тип з яким працює функція. Всюди в тілі і заголовку...
20520. Эксплуатация и ремонт металлургических машин 1.54 MB
  Поэтому перед выполнением лабораторной работы необ ходимо ознакомиться с ее содержанием теоретической частью и методикой выполнения. Выполняться могут не все лабораторные работы но студен ты должны знать теоретический материал по всем лабораторным работам. Лабораторные работы выполняются самостоятельно студен тами в составе подгруппы в строгом соответствии с инструкциями в отведенные по расписанию часы занятий. Выполнение и оформление лабораторных работ Перед выполнением работы необходимо повторить учебный материал и накануне подробно...
20522. Схемы соединение гальванических элементов. Схема включения реостата. Схема включения потенциометра 24.5 KB
  Схемы соединение гальванических элементов. Теоретическое обоснование: Последовательное соединение элементов показано на стенде а ЭДС батареи Ебат составленной из последовательно соединенных элементов будет больше ЭДС одного элемента Е в n раз Ебат=Е Последовательное соединение элементов применяется в тех случаях когда требуется напряжение больше чем напряжение одного элемента. Но при любом количестве соединяемых последовательно элементов номинальный ток батареи остается равным номинальному току одного элемента. План работы: Начертить...
20523. Определение потерь напряжения и мощности в проводах линии и электропередачи 69.5 KB
  Определение потерь напряжения и мощности в проводах линии и электропередачи. Выяснить какое влияние оказывает нагрузка линии и сопротивление её проводов на напряжение приемника. Определить мощность потерь в проводах и КПД линии электропередачи. Уменьшение напряжения в линии по мере удаления от источника вызвано потерями напряжения в проводах линии Ui=U1U2 и численно равно падению напряжения.
20524. Исследование электрической цепи переменного тока при последовательном соединении 98.5 KB
  Исследование электрической цепи переменного тока при последовательном соединении. Проверить практически и уяснить какие физические явления происходят в цепи переменного тока. Теоретическое обоснование: При подведении к зажимам последовательно соединённых активного сопротивления R индуктивности L и ёмкости C синусоидального напряжения U=UMsinWt и тока I=IMsinWtU. Действующее значение тока в цепи можно найти по закону Ома: где полное сопротивление цепи.
20525. Исследование полупроводникового диода 28.5 KB
  Исследование полупроводникового диода. Цель работы: Изучение свойств плоскостного диода путём практического снятия и исследования его вольтамперной характеристики. UПР В I A Uобр В I A 06 10 25 10 065 15 5 14 07 20 7 20 075 25 9 26 08 80 11 32 Обработка результатов опытов: По данным таблицы 1 2 в декартовой системе координат построить вольтамперную характеристику диода. Это показывает вольтамперная характеристика диода.