50446

Статистические модели сигналов в линейных системах

Лабораторная работа

Информатика, кибернетика и программирование

Пусть стационарный случайный процесс заданный своим математическим ожиданием 1 и ковариационной функцией 2 поступает на вход стационарной линейной системы с весовой функцией . Ковариационная функция сигнала на выходе системы описывается выражением ....

Русский

2014-01-23

5.07 MB

1 чел.

Лабораторная работа №6.

Статистические модели сигналов в линейных системах.

Цель работы.

 Исследование характеристик стационарных случайных процессов в линейных системах.

 Основные положения.

Пусть стационарный случайный процесс, заданный своим математическим ожиданием

,                                                (1)

и ковариационной функцией

,                                          (2)

поступает на вход стационарной линейной системы с весовой

функцией . Весовая функция является полной характеристикой, описывающей преобразование сигналов, осуществляемое непрерывной линейной системой.

Тогда получим сигнал на выходе

.                                            (3)

Из (3) следует, что математическое ожидание сигнала на выходе

 .                  (4)

При этом     принимаем , согласно (1), постоянным и выносим за знак интеграла.                                                       

Ковариационная функция сигнала на выходе системы описывается выражением

.           (5)

Формула (5) используется для случая установившегося режима, когда система асимптотически устойчива, т.е. .

Дисперсия сигнала на выходе системы определяется как значение ковариационной функции при :

,                                                 (6)

тогда из (5), сделав соответствующую подстановку,  получим

.                          (7)

Спектральная плотность сигнала на выходе системы

,                    (8)

где:  -- спектральная плотность сигнала на входе системы,

        --передаточная функция системы.

Таким образом, спектральная плотность сигнала на выходе асимптотически устойчивой стационарной линейной системы в установившемся режиме равна спектральной плотности сигнала на входе, умноженной на квадрат модуля частотной характеристики системы.

Применив обратное преобразование Фурье к обеим частям выражения (8) получим связь между ковариационной функцией и спектральной плотностью сигнала

.                   (9)

Тогда из (6) и (9) получим выражение, связывающее дисперсию и спектральную плотность сигнала

                                    (10)

Для расчета оценок мат. ожидания, дисперсии, ковариационной функции на ЭВМ удобнее использовать рекуррентные формулы, приведенные далее.

Рекуррентная формула для вычисления оценки мат. ожидания:

                                         (11)

где: --оценка мат. ожидания на i-том шаге,

      --i-тое измеренное значение сигнала,

       n—количество измерений.

Рекуррентная формула для вычисления оценки дисперсии:

                                      (12)

где: --оценка дисперсии на i-том шаге,

      --i-тое измеренное значение сигнала,

       n—количество измерений.

Формула для вычисления оценки ковариационной функции  (в установившемся режиме):

                     ,                                  (13)

где: --i-тое измеренное значение сигнала,

        n—количество измерений.

Формула (13) используется для нахождения ковариационной функции на основании экспериментально снятой кривой случайного процесса при наличии достаточно длительной записи.

Описание модели.

На вход формирующего фильтра поступает единичный белый шум. Формирующий фильтр представляет собой звено с такой частотной характеристикой, которое формирует случайный процесс с заданной спектральной плотностью (ковариационной функцией) из единичного белого шума.

Рис.1

Далее полученный сигнал   поступает на вход линейной системы. В данном случае линейная система представляет собой апериодическое или колебательное (два варианта) звено. На выходе линейной системы получаем случайный сигнал с соответствующей ковариационной функцией и спектральной плотностью чем на входе. Связь между ковариационной функцией на входе и выходе линейной системы можно получить по формуле (5), между спектральной плотностью на входе и выходе по формуле (8). Характеристики сигналов  на входе линейной системы, а также типы исследуемых линейных систем представлены ниже.

Характеристики сигналов  на входе линейной системы.

Сигнал  №1.

Ковариационная функция .

Спектральная плотность .

 

Сигнал  №2.

Ковариационная функция .

Спектральная плотность .

 Типы систем.

1.Апериодическое звено.

Передаточная функция

2.Колебательное звено.

Передаточная функция .

 Блок оценочных характеристик представляет собой программу на языке MATLAB составленную на основе формул (11),(12),(13). Программа строит  для заданных параметров ковариационной функции сигнала на входе и передаточной функции линейной системы:

1)на входе системы-- ковариационную функцию, спектральную плотность, оценки мат. ожидания, дисперсии;

2)на выходе системы-- оценки мат. ожидания, дисперсии, ковариационной функции, спектральной плотности.

Программа исследований.

  1.  Получить у преподавателя вариант задания.
  2.  Запустить MATLAB для WINDOWS.

В каталоге LAB6 запустить файл lab51.m.

  1.  В меню «ИСХОДНЫЕ ДАННЫЕ» выбрать заданный тип сигнала на входе.
  2.  В появившихся полях для ввода ввести заданные параметры ковариационной функции сигнала на входе.
  3.  В меню «ИСХОДНЫЕ ДАННЫЕ» выбрать заданный тип системы.
  4.  В появившихся полях для ввода ввести заданные параметры передаточной функции системы.
  5.  В меню «ВЫВОД ХАРАКТЕРИСТИК» выбрать подпункт «На входе системы».
  6.  Снять полученные результаты. При необходимости кнопкой «Увеличить» увеличить окно вывода графика.
  7.  В меню «ВЫВОД ХАРАКТЕРИСТИК» выбрать подпункт «На выходе системы».
  8.  Снять полученные результаты. При необходимости увеличить или уменьшить количество реализаций (соответствует масштабу по времени).
  9.  Изменив параметры ковариационной функции сигнала на входе и передаточной функции линейной системы повторить пункты 2—10.

Примечание. При увеличении количества реализаций до трехзначного числа и более программе требуется достаточно долгое время для расчета оценок характеристик на выходе системы.

 Содержание отчета.

  1.  Цель работы.
  2.   Теоретические сведения о проделанной работе.
  3.  Вариант задания.
  4.  Результаты исследований.
  5.  Выводы о проделанной работе.

 Литература.

  1.  Ю.М. Астапов, В.С. Медведев «Статистическая теория систем автоматического регулирования». Изд. «Наука». 1982.
  2.  А.А. Свешников «Прикладные методы теории случайных функций». Изд. «Наука». 1968.

 

А также другие работы, которые могут Вас заинтересовать

17027. Аналітичні обчислення 48 KB
  Лабораторна робота №5 Тема: Аналітичні обчислення. Мета: ознайомитися з аналітичним обчисленням у середовищі MathCad. Обладнання: ПК ПЗ MathCad Хід роботи: Індивідуальне завдання: Використовуючи панель Калькулус для даної функції знайти: а рівняння доти...
17028. Побудова графіків в MathCad 62 KB
  Лабораторна робота № 6 Тема: Побудова графіків в MathCad Мета: Відробити прийоми побудови графіків у середовищі MathCad Обладнання: ПК ПЗ MathCad. Ход работы 1. Побудувати графіки функційтаблиця 1 у спільній системі координат а функцію з таблиці 2 що задана параметричноокр...
17029. Рішення диференціальних рівнянь в MathCad 61 KB
  Лабораторна робота № 7 Тема: Рішення диференціальних рівнянь. Мета: Відробити прийоми рішення звичайних диференціальних рівнянь використовуючи інструменти MathCad. Обладнання: ПК ПЗ MathCad. Вирішити задачу Коші використовуючи блок Given/Оd...
17030. Розв’язання задач математичної статистики в системі MathCad 37 KB
  Лабораторна робота № 8 Тема: розвязання задач математичної статистики в системі MathCad. Мета: ознайомитися з можливостями системи MathCad для розвязання задач математичної статистики: з убудованими функціями для знаходження параметрів регресії. Індивідуальне за
17031. Створення елементів керування на екранній формі в Visual BASIC 1.93 MB
  Лабораторна робота №9 Тема. Створення елементів керування на екранній формі в Visual BASIC. Мета: відробити прийоми створення елементів керування на екранній формі та встановлення їх властивостей в Visual BASIC 6.0 . Обладнання: ПК ПЗ Visual BASIC 6.0 Хід роботи Індивідуальне за
17032. Використання операторів умов в Visual BASIC 41.5 KB
  Лабораторна робота №10 Тема: Використання операторів умов Мета: відробити прийоми використання оператори умов в Visual BASIC 6.0 . Обладнання: ПК ПЗ VB 6.0 Хід роботи Індивідуальне завдання. Знайти значення функції використавши вікно повідомлень для вводу та виводу ...
17033. Програмування циклів з лічильником в Visual BASIC 33 KB
  Лабораторна робота № 11 Тема: Програмування циклів з лічильником Мета: відробити прийоми використання циклів з лічильником в Visual BASIC 6.0 . Обладнання: ПК ПЗ VB 6.0 Хід роботи Індивідуальне завдання. Обчислити суму або добуток використовуючи ввід та вивід даних чер
17034. Умовні оператори циклу і переклад в інших системах числення в Visual BASIC 45.5 KB
  Лабораторна робота №12 Тема. Умовні оператори циклу і переклад в інших системах числення Мета: відробити прийоми використання умовних циклів і розглянути переклад у системи числення за допомогою VB 6.0. Обладнання: ПК ПЗ VB 6.0. Хід роботи Індивідуальне завдання. ...
17035. Послідовності чисел в Visual BASIC 34.5 KB
  Лабораторна робота №13 Тема. Послідовності чисел Мета: відробити прийоми використання циклів з лічильником і розглянути алгоритм роботи з членами послідовності чисел. Обладнання: ПК ПЗ VB 6.0. Хід роботи Індивідуальне завдання. Скласти рекур...