50490

Физиология слухового анализатора. Слуховая сенсорная система

Лекция

Биология и генетика

Слуховая сенсорная система – второй по значению дистантный анализатор человека, играет важную роль именно у человека в связи с возникновением членораздельной речи. Структурно-функциональная характеристика слухового анализатора

Русский

2014-11-16

3.19 MB

24 чел.

Тема: ФИЗИОЛОГИЯ СЛУХОВОГО АНАЛИЗАТОРА

(Слуховая сенсорная система)

Вопросы лекции:

  1.  Структурно-функциональная характеристика слухового анализатора:
    1.  Наружное ухо
    2.  Среднее ухо
    3.  Внутреннее ухо
  2.  Отделы слухового анализатора: периферический, проводниковый, корковый.
  3.  Восприятие высоты, силы звука и локализации источника звука:
    1.  Основные электрические явления в улитке
    2.  Восприятие звуков различной высоты
    3.  Восприятие звуков различной интенсивности
    4.  Определение источника звука (бинауральный слух)
    5.  Слуховая адаптация

1. Слуховая сенсорная система – второй по значению дистантный анализатор человека, играет важную роль именно у человека в связи с возникновением членораздельной речи.

Функция слухового анализатора: превращение звуковых волн в энергию нервного возбуждения и слуховое ощущение.

Как любой анализатор, слуховой анализатор состоит из периферического, проводникового и коркового отдела.

ПЕРИФЕРИЧЕСКИЙ ОТДЕЛ 

Превращает энергию звуковых волн в энергию нервного возбуждения – рецепторный потенциал (РП). Этот отдел включает:

  •  внутреннее ухо (звуковоспринимающий аппарат);
  •  среднее ухо (звукопроводящий аппарат);
  •  наружное ухо (звукоулавливающий аппарат).

Составляющие этого отдела объединяются в понятие орган слуха.

Функции отделов органа слуха

Наружное ухо:

  1.  звукоулавливающая (ушная раковина) и направляющая звуковую волну в наружный слуховой проход;
  2.  проведение звуковой волны через слуховой проход к барабанной перепонке;
  3.  механическая защита и защита от температурных воздействий окружающей среды всех остальных отделов органа слуха.

Среднее ухо (звукопроводящий отдел) – это барабанная полость с 3-мя слуховыми косточками: молоточек, наковальня и стремечко.

Барабанная перепонка отделяет наружный слуховой проход от барабанной полости. Рукоятка молоточка вплетена в барабанную перепонку, другой его конец сочленен с наковальней, которая, в свою очередь, сочленена со стремечком. Стремечко прилегает к мембране овального окна. В барабанной полости поддерживается давление, равное атмосферному, что очень важно для адекватного восприятия звуков. Эту функцию выполняет евстахиева труба, которая соединяет полость среднего уха с глоткой. При глотании труба открывается, в результате чего происходит вентиляция барабанной полости и уравнивание давления в ней с атмосферным. Если внешнее давление быстро изменяется (быстрый подъем на высоту), а глотания не происходит, то разность давлений между атмосферным воздухом и воздухом в барабанной полости приводит к натяжению барабанной перепонки и возникновению неприятных ощущений («закладывание ушей»), снижению восприятия звуков.

Площадь барабанной перепонки (70 мм2) значительно больше площади овального окна (3,2 мм2), благодаря чему происходит усиление давления звуковых волн на мембрану овального окна в 25 раз. Рычажный механизм косточек уменьшает амплитуду звуковых волн в 2 раза, поэтому происходит такое же усиление звуковых волн на овальном окне барабанной полости. Следовательно, среднее ухо усиливает звук примерно в 60-70 раз, а если учитывать усиливающий эффект наружного уха, то эта величина возрастает в 180-200 раз. В связи с этим, при сильных звуковых колебаниях для предотвращения разрушительного действия звука на рецепторный аппарат внутреннего уха, среднее ухо рефлекторно включает «защитный механизм». Он состоит в следующем: в среднем ухе есть 2 мышцы, одна из них натягивает барабанную перепонку, другая – фиксирует стремечко. При сильных звуковых воздействиях эти мышцы при их сокращении ограничивают амплитуду колебаний барабанной перепонки и фиксируют стремечко. Это «гасит» звуковую волну и предохраняет чрезмерное возбуждение и разрушение фонорецепторов кортиевого органа.

Внутреннее ухо: представлено улиткой – спирально закрученным костным каналом (2,5 завитка у человека). Этот канал разделен по всей его длине на три узкие части (лестницы) двумя мембранами: основной мембраной и вестибулярной мембраной (Рейснера).

На основной мембране  расположен спиральный орган – орган корти (кортиев орган) – это собственно звуковоспринимающий аппарат с рецепторными клетками – это и есть периферический отдел слухового анализатора.

Геликотрема (отверстие) соединяет верхний и нижний канал на вершине улитки. Средний канал является обособленным.

Над кортиевым органом расположена текториальная мембрана, один конец которой закреплен, а другой остается свободным. Волоски наружных и внутренних волосковых клеток кортиевого органа соприкасаются с текториальной мембраной, что сопровождается их возбуждением, т.е. энергия звуковых колебаний трансформируется в энергию процесса возбуждения.

Строение кортиевого органа

Процесс трансформации начинается с попадания звуковых волн в наружное ухо; они приводят в движение барабанную перепонку. Колебания барабанной перепонки через систему слуховых косточек среднего уха передаются на мембрану овального окна, что вызывает колебания перилимфы вестибулярной лестницы. Эти колебания через геликотрему передаются на перилимфу барабанной лестницы и достигают круглого окна, выпячивая его в сторону среднего уха (это не дает затухнуть звуковой волне при прохождении по вестибулярному и барабанному каналу улитки). Колебания перилимфы передаются на эндолимфу, что вызывает колебания основной мембраны. Волокна основной мембраны приходят в колебательные движения вместе с рецепторными клетками (наружными и внутренними волосковыми клетками) кортиевого органа. При этом волоски фонорецепторов контактируют с текториальной мембраной. Реснички волосковых клеток деформируются, это вызывает формирование рецепторного потенциала, а на его основе – потенциала действия (нервный импульс), который проводится по слуховому нерву и передается в следующий отдел слухового анализатора.

ПРОВОДНИКОВЫЙ ОТДЕЛ СЛУХОВОГО АНАЛИЗАТОРА

Проводниковый отдел слухового анализатора представлен слуховым нервом. Он образован аксонами нейронов спирального ганглия (1-й нейрон проводящего пути). Дендриты этих нейронов иннервируют волосковые клетки кортиевого органа (афферентное звено), аксоны образуют волокна слухового нерва. Волокна слухового нерва заканчиваются на нейронах ядер кохлеарного тела (VIII пара ч.м.н.) (второй нейрон). Затем, после частичного перекреста, волокна слухового пути идут в медиальные коленчатые тела таламуса, где опять происходит переключение (третий нейрон). Отсюда возбуждение поступает в кору (височная доля, верхняя височная извилина, поперечные извилины Гешля) – это проекционная слуховая зона коры.

КОРКОВЫЙ ОТДЕЛ СЛУХОВОГО АНАЛИЗАТОРА

Представлен в височной доле коры больших полушарий – верхняя височная извилина, поперечные височные извилины Гешля. С этой проекционной зоны коры связаны корковые гностические слуховые зоны – зона сенсорной речи Вернике и праксическая зона – моторный центр речи Брока (нижняя лобная извилина). Содружественная деятельность трех зон коры обеспечивает развитие и функцию речи.

Слуховая сенсорная система имеет обратные связи, которые обеспечивают регуляцию деятельности всех уровней слухового анализатора с участием нисходящих путей, которые начинаются от нейронов «слуховой» коры и последовательно переключаются в медиальных коленчатых телах таламуса, нижних буграх четверохолмия среднего мозга с формированием тектоспинальных нисходящих путей и на ядрах кохлеарного тела продолговатого мозга с формированием вестибулоспинальных путей. Это обеспечивает в ответ на действие звукового раздражителя формирование двигательной реакции: поворота головы и глаз (а у животных – ушных раковин) в сторону раздражителя, а также повышение тонуса мышц-флексоров (сгибание конечностей в суставах, т.е. готовность к прыжку или бегу).

Слуховая кора

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЗВУКОВЫХ ВОЛН, КОТОРЫЕ ВОСПРИНИМАЮТСЯ ОРГАНОМ СЛУХА

  1.  Первой характеристикой звуковых волн является их частота и амплитуда.

Частота звуковых волн определяет высоту звука!

Человек различает звуковые волны с частотой от 16 до 20 000 Гц (это соответствует 10-11 октавам). Звуки, частота которых ниже 20 Гц (инфразвуки) и выше 20 000 Гц (ультразвуки) человеком не ощущаются!

Звук, который состоит из синусоидальных или гармонических колебаний, называют тоном (большая частота – высокий тон, малая частота – низкий тон). Звук, состоящий из не связанных между собой частот, называют шумом.

  1.  Второй характеристикой звука, которую различает слуховая сенсорная система, является его сила или интенсивность.

Сила звука (его интенсивность) совместно с частотой (тоном звука) воспринимается как громкость. Единица измерения громкости – бел = lg I/I0, однако в практике чаще используют децибел (dB) (0,1 бела). Децибел – это 0,1 десятичного логарифма отношения интенсивности звука к пороговой его интенсивности:               dB = 0,1 lg I/I0. Максимальный уровень громкости, когда звук вызывает болевые ощущения, равен 130-140 дБ.

Чувствительность слухового анализатора определяется минимальной силой звука, вызывающей слуховые ощущения.

В области звуковых колебаний от 1000 до 3000 Гц, что соответствует человеческой речи, ухо обладает наибольшей чувствительностью. Эта совокупность частот называется речевой зоной (1000-3000 Гц). Абсолютная звуковая чувствительность в этом диапазоне равна 1*10-12 вт/м2. При звуках выше 20 000 Гц и ниже 20 Гц абсолютная слуховая чувствительность резко снижается – 1*10-3 вт/м2. В речевом диапазоне воспринимаются звуки, имеющие давление меньше 1/1000 бара (бар равен 1/1 000 000 части нормального атмосферного давления). Исходя из этого, в передающих устройствах, чтобы обеспечить адекватное понимание речи, информация должна передаваться в речевом диапазоне частот.

МЕХАНИЗМ ВОСПРИЯТИЯ ВЫСОТЫ (ЧАСТОТЫ), ИНТЕНСИВНОСТИ (СИЛЫ) И ЛОКАЛИЗАЦИИ ИСТОЧНИКА ЗВУКА (БИНАУРАЛЬНЫЙ СЛУХ)

Восприятие частоты звуковых волн

А. Основные электрические явления в улитке

В улитке можно зарегистрировать пять различных электрических потенциалов:

  1.  Мембранный потенциал слуховой рецепторной клетки – это потенциал покоя (регистрируется в отсутствие звуковых раздражителей).
  2.  Потенциал эндолимфы (в перепончатой лестнице – средний канал улитки) – регистрируется в отсутствие звуковых раздражителей; обусловлен уровнем окислительно-восстановительных процессов в каналах улитки.

Следующие три потенциала связаны с действием звука на слуховой анализатор.

  1.  Микрофонный потенциал улитки – генерируется на мембране волосковой клетки кортиева органа в результате деформации волосков при соприкосновении с текториальной (покровной) мембраной. Частота микрофонных потенциалов соответствует частоте звуковых колебаний, а амплитуда микрофонных потенциалов соответствует силе звука.
  2.  Суммационный потенциал возникает в результате наложения микрофонного потенциала на потенциал эндолимфы (эндокохлеарный потенциал).

Микрофонный потенциал и суммационный потенциал являются рецепторным потенциалом (РП) фонорецепторов улитки!

  1.  ПД слухового нерва возникает через синаптическую передачу возбуждения (рецепторного потенциала) с волосковой клетки на волокна слухового нерва. При этом частота генерируемых ПД равна частоте звуковых волн, если она не превышает 1000 Гц. При увеличении частоты звуковых волн выше 1000 Гц увеличения ПД нервных волокон слухового нерва не происходит, т.к. для слухового нерва лабильность равно 1000 ПД/сек. Поэтому при действии на ухо более высоких тонов частота ПД в слуховом нерве много ниже частоты звуковых волн. При этом, при низких тонах импульсация наблюдается в большом числе, а при высоких тонах – в небольшом числе нервных волокон слухового нерва.

ТЕОРИЯ ВОСПРИЯТИЯ ЧАСТОТЫ (ТОНА) ЗВУКОВ

Рецепторная теория Гельмгольца (1863 г.)

Согласно этой теории восприятие звуковых волн разных частот (тонов) зависит от структуры и свойств волокон, которые образуют основную мембрану. У основания овального окна они короткие – 0,04 мм; на вершине улитки, в области геликотремы – 0,5 мм. Каждое из волокон контактирует с определенными волосковыми клетками. При этом каждое волокно основной мембраны имеет собственную частоту колебаний. И при колебаниях эндолимфы, которые возникают при прохождении звуковой волны по среднему каналу улитки, начинает колебаться то волокно, которое «настроено» в резонанс данной частоте колебаний, т.е. может воспроизводить эту частоту. Колебание каждого из волокон основной мембраны воспринимается рецепторными клетками кортиева органа, расположенными именно на этом волокне. Таким образом, по Гельмгольцу, для тона каждой высоты существует свой индивидуальный фонорецептор.

Телефонная теория Резерфорда (1880 г.)

Согласно этой теории, при восприятии звуков разной частоты (высота тона) в слуховом нерве формируются ПД, частота которых соответствует частоте звуковых волн, действующих на ухо.

Обе теории не полностью объясняют механизм восприятия звуковых волн. Однако некоторые представления их легли в основу современной теории звуковосприятия – теории места.

Согласно этой теории, при действии звука в состояние колебания вступает вся основная мембрана, но максимальное отклонение основной мембраны происходит только в определенном месте, т.е. происходит пространственное кодирование действующего звука. При этом резонирующим субстратом является не определенное волокно основной мембраны, а следовательно, и индивидуальный фонорецептор, а столб эндолимфы определенной длины: чем больше частота воспринимаемых ухом звуковых волн, тем меньше длина колеблющегося столба эндолимфы и тем ближе к основанию улитки и овальному окну расположено место максимальной амплитуды колебания. При действии звуков низкой частоты длина колеблющегося столба жидкости увеличивается и место максимальной амплитуды колебаний отодвигается в сторону вершины улитки.

При колебаниях эндолимфы колеблется и основная мембрана, причем не отдельные ее волокна, а большие или меньшие ее участки. При этом будет возбуждаться разное количество рецепторных клеток, расположенных на этой мембране: при действии звуков низкой частоты возбуждаются рецепторные клетки вдоль всей основной мембраны, при действии высоких тонов будет возбуждаться меньшее число клеток – только те, которые расположены на основной мембране у основания улитки (овальное окно).

Т.о. существует два механизма различения высоты тонов (частоты звуковых волн). При низких тонах (малая частота звуковых волн) информация о них передается по волокнам слухового нерва в виде ПД, частота которых равна частоте воспринимаемых звуковых волн. При высоких частотах (тонах) происходит пространственное кодирование звуковых раздражителей согласно теории места.

Различение (восприятие) интенсивности звука

Сила звука кодируется ка частотой ПД, так и числом возбужденных рецепторов и соответствующих нейронов.

Порог возбуждения внутренних волосковых клеток – выше, наружных волосковых клеток – ниже. Поэтому в зависимости от силы звука количество возбужденных рецепторов разное, соотношение возбужденных и невозбужденных рецепторов тоже разное. Это создает определенный «рисунок» ПД в нервных волокнах слухового нерва. Кроме этого, нейроны коркового отдела также обладают разной возбудимостью: при слабых звуковых сигналах возбуждается небольшое число более возбудимых нейронов. При усилении звука в возбуждение вовлекается большее число нейронов и с меньшей возбудимостью.


 

А также другие работы, которые могут Вас заинтересовать

11304. ОСНОВИ ЕЛЕКТРОБЕЗПЕКИ 521 KB
  Лекція 9 ОСНОВИ ЕЛЕКТРОБЕЗПЕКИ Програмна анотація Основні причини нещасних випадків Електричні травми їх види. Фактори що впливають на ступінь ураження людини електрострумом Колективні та індивідуальні засоби захисту в електроустановках Аналіз...
11305. ШКІДЛИВІ ВИРОБНИЧІ ФАКТОРИ ТА ЗАСОБИ ЗАХИСТУ ВІД НИХ 106.5 KB
  Лекція 6 ШКІДЛИВІ ВИРОБНИЧІ ФАКТОРИ ТА ЗАСОБИ ЗАХИСТУ ВІД НИХ Програмна анотація Види виробничих факторів Вплив шуму вібрації промислових випромінювань на людину Дія шкідливих речовин Види виробничих факторів Під час роботи на працюючих вплива...
11306. СОВЕРШЕНСТВОВАНИЕ СИСТЕМЫ УПРАВЛЕНЧЕСКОГО УЧЕТА В ЗАО ЭССЕН ПРОДАКШН АГ 466.5 KB
  Разработка специфической для каждого предприятия методики, включающей параметры управленческого учёта (направления, центры дохода, центры затрат), учётную политику, форматы отчётности, процедуры получения информации...
11307. История денег 96 KB
  Раздел 1. Деньги Лекция №1 История денег До появления денег был бартер прямой безденежный обмен товарами. Существует два предположения того как возникли деньги: рационалистический деньги являются результатом соглашения между людьми; эволюционноист
11308. Эмиссия денег. Банковский мультипликатор 44 KB
  Лекция №2 Эмиссия денег. Банковский мультипликатор Банковская система должна обеспечивать национальное хозяйство денежными средствами в объеме который нужен для его нормального функционирования. Увеличение потребности экономики в деньгах в связи с ростом национа
11309. Деньги, денежное обращение, денежная масса, денежная база 87 KB
  Лекция №3 Деньги денежное обращение денежная масса денежная база Одним из важнейших показателей характеризующих денежнокредитную сферу и в частности денежный оборот является денежная масса. Денежная масса это совокупность денежных средств предназначенных...
11310. Банки: основные понятия 53 KB
  Лекция №6 Банки: основные понятия Банк от итал. banco лавка стол на которых менялы раскладывали монеты финансовокредитный институт основной функцией которого является оказание финансовых услуг юридическим и физическим лицам. Банковская система Российской Фе
11311. Виды банковских вкладов 43.5 KB
  Лекция Виды банковских вкладов В Гражданском кодексе говорится что вклады бывают двух видов: срочные; до востребования. В свою очередь в банковской практике вклады под проценты предлагаются трех видов: Расчетные; Расчетный вклад – это по
11312. Логические основы цифровой техники 107.5 KB
  9 Тема №1 Логические основы цифровой техники Занятие 1. Алгебра логических высказываний Учебные методические и воспитательные цели: ...