50530

Изучение детекторных характеристик детекторов

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Диодный детектор. Детекторные характеристики диодного детектора при различной омической нагрузке. Транзисторный детектор.

Русский

2014-01-25

251 KB

19 чел.

Выполнение работы

Изучение детекторных характеристик детекторов

1. Диодный детектор.

Uс, мВ

2

50

100

150

200

250

500

750

1000

1250

1500

1750

2000

UR1C1, мВ

4

4

4

9

9

24

219

454

751

927

922

1740

1230

UR2C1, мВ

0

0

4

4

9

19

180

400

625

805

893

922

1210

Рис.1. Детекторные характеристики диодного детектора

при различной омической нагрузке.

2. Транзисторный детектор.

Uс, мВ

0

5

10

15

20

25

30

UR1C1, мВ

454

1098

1508

1826

2055

2152

2270

UR2C1, мВ

356

903

1245

1484

1665

1752

1801

Рис.2. Детекторные характеристики транзисторного детектора

при различной омической нагрузке.

3. Синхронный детектор.

Uс, мВ

0

10

20

30

40

50

60

70

80

90

100

U, мВ

0

14

39

63

87

112

136

161

180

200

219

Рис.3. Детекторная характеристика синхронного детектора.

Как видно из графиков, лучшей детекторной характеристикой обладает синхронный детектор. Во-первых, его детекторная характеристика является наиболее линейной, а во вторых, она выходит из нуля, т.е. при отсутствии сигнала детектор не «шумит». На втором месте по качеству находится транзисторный детектор. Его характеристики являются нелинейными, но достаточно плавными, что может обеспечить низкий уровень искажений и устойчивость работы всей системы. Существенный недостаток – высокое напряжение дрейфа нулевого уровня. На третьем месте по качеству стоит диодный детектор. Несмотря на отсутствие напряжения дрейфа нулевого уровня или очень низкий его уровень, характеристики детектора резко нелинейны. Это может привести к сильным искажениям сигнала, а также ввести систему в неустойчивое состояние.

Изучение частотных характеристик детекторов

1. Диодный детектор.

Uс=1.353 В.

fн, кГц

0.044

3

6

9

12

15

UR1C1, мВ

96

164

159

159

151

141

UR1C2, мВ

101

170

168

176

179

181

UR1(C1+С2), мВ

96

164

158

158

149

135

Рис.4. Частотные характеристики диодного детектора

при различной емкостной нагрузке.

2. Транзисторный детектор.

Uс=15 мВ.

fн, кГц

0.044

3

6

9

12

15

UR1C1, мВ

75

148

151

162

165

169

UR1C2, мВ

75

153

161

180

187

201

UR1(C1+С2), мВ

70

148

150

158

160

160

Рис.5. Частотные характеристики транзисторного детектора

при различной емкостной нагрузке.

3. Синхронный детектор.

Uс=100 мВ.

fн, кГц

0.044

3

6

9

12

15

U, мВ

5

5

5

6

6

6

Рис.6. Частотная характеристика синхронного детектора.

Судя по графикам, лучшей частотной характеристикой обладает синхронный детектор, т.к. она почти постоянна во всей полосе исследуемых частот. На высоких частотах наблюдается незначительный рост характеристики. Частотные характеристики диодного и транзисторного детекторов стоят на втором месте по качеству. По своей степени нелинейности они схожи. Схожесть состоит ещё и в том, что на нижних частотах для обоих типов детекторов наблюдается сильный завал. Отличие – в том, что у диодного детектора на высоких частотах, как правило, также наблюдается достаточно сильный спад характеристики (меньше, чем на низких частотах), а у транзисторного детектора на высоких частотах наблюдается плавный рост характеристик.

Определение коэффициента передачи детекторов

1. Диодный детектор.

Uс=1.2 В. Fм=43 Гц. f=1.103 кГц. m=30%. Нагрузка R1C1.

Uс, мВ

250

500

750

1000

1250

1500

U~, мВ

7

38

81

115

152

198

К

0.093

0.253

0.36

0.383

0.405

0.44

Рис.7. Коэффициент передачи диодного детектора.

2. Транзисторный детектор.

Fм=43 Гц. f=1.103 кГц. m=30%. Нагрузка R1C1.

Uс, мВ

0

5

10

15

20

25

30

U~, мВ

32

102

129

147

132

145

119

К

68

43

32.67

22

19.33

13.22

Рис.8. Коэффициент передачи транзисторного детектора.

3. Синхронный детектор.

Fм=43 Гц. f=1.103 кГц. m=30%.

Uс, мВ

0

10

20

30

40

50

60

70

80

90

100

U~, мВ

5

5

7

8

10

13

16

18

21

24

26

К

1.667

1.167

0.889

0.833

0.867

0.889

0.857

0.875

0.889

0.867

Рис.9. Коэффициент передачи синхронного детектора.

Из представленных коэффициентов передачи лучшим обладает синхронный детектор, поскольку его коэффициент передачи почти постоянен во всей полосе рассматриваемых частот. Диодный и транзисторный детекторы находятся по качеству на втором месте. Коэффициент передачи диодного детектора достаточно сильно возрастает, а транзисторного – убывает с ростом частоты. Общим недостатком транзисторного и синхронного детекторов является уход в бесконечность коэффициента передачи на низких частотах.


ЛР – 2069965 – 2
10302 – 0210

2

Лист

Дата

Подпись

докум.

Лист

Изм.

ЛР – 2069965 – 210302 – 0210

3

Лист

Дата

Подпись

№ докум.

Лист

Изм.

ЛР – 2069965 – 210302 – 0210

4

Лист

Дата

Подпись

№ докум.

Лист

Изм.

ЛР – 2069965 – 210302 – 0210

5

Лист

Дата

Подпись

№ докум.

Лист

Изм.

ЛР – 2069965 – 210302 – 0210

6

Лист

Дата

Подпись

№ докум.

Лист

Изм.


 

А также другие работы, которые могут Вас заинтересовать

30556. Задачи и принципы инженерно-технической защиты информации 50.5 KB
  Задачи Инженернотехническая защита информации одна из основных составляющих комплекса мер по защите информации составляющей государственную коммерческую и личную тайну. Этот комплекс включает нормативноправовые документы организационные и технические меры направленные на обеспечение безопасности секретной и конфиденциальной информации. Инженернотехническая защита информации включает комплекс организационных и технических мер по обеспечению информационной безопасности техническими средствами и решает следующие задачи:...
30557. Способы и средства инженерной защиты и технической охраны объектов 20.37 KB
  Проникновение злоумышленника может быть скрытным с механическим разрушением инженерных конструкций и средств охраны с помощью инструмента или взрыва и в редких случаях в виде вооруженного нападения с нейтрализацией охранников. Люди и средства ИЗТОО образуют систему охраны. В общем случае структура системы охраны объектов.
30558. Теорема о среднем для действительных функций одного действительного переменного. Теорема Ферма; теорема Ролля, теорема Лагранжа. Примеры, показывающие существенность каждого условия в теореме Ролля: теоретическая интерпретация 91.81 KB
  Все вышеперечисленные теоремы являются основными теоремами дифференциального исчисления поэтому сначала введем понятие дифференцируемости функции. Понятие дифференцируемости функции. Выражение ∆x называется дифференциалом функции fx в точке x0 соответствующим приращению аргумента ∆x и обозначается символом dy или dfx0. При этом приращение функции ∆y определяется главным образом первым слагаемым т.
30559. Первообразная и неопределенный ∫. Опр. первообразной. Опр. неопределенного ∫, свойства. Опр. по Риману. Необходимое и достаточное условие интегрируемости. Ньютон-Лейбниц 23.61 KB
  Функция Fx называется первообразной для функции fx на интервале b если в любой точке х из интервала b функция Fx дифференцируема и имеет производную Fx=fx. Совокупность всех первообразных функций для данной функции fx на интервале b называется неопределенным интегралом от функции fx на этом интервале и обозначается где fxdx подынтегральное выражение fx подынтегральная функция x переменная интегрирования. Операцию нахождения первообразной восстановление функции по ее производной называют интегрированием...
30560. Непрерывные функции в Rn . Дифференцируемые функции в Rn .. Необходимые и достаточные условия дифференцируемости функции в точке. Полный дифференциал функции нескольких переменных 60.52 KB
  Дифференцируемые функции в Rn . Необходимые и достаточные условия дифференцируемости функции в точке. Полный дифференциал функции нескольких переменных.
30561. Теорема о дифференцируемости сложной функции. Правила дифференцирования. Производная по направлению. Градиент 65.41 KB
  Требования доктрины информационной безопасности РФ и ее реализация в существующих системах информационной безопасности. Доктрина информационной безопасности Российской Федерации. Понятие и назначение доктрины информационной безопасности. 9 сентября 2000 года президент РФ Владимир Путин утвердил Доктрину информационной безопасности РФ.
30562. Локальный экстремум функции многих переменных. Достаточные условия экстремума 45.86 KB
  ТочкаM0x0;y0 внутренняя точка области D. Если в D присутствует такая окрестность UM0 точки M0 что для всех точек то точка M0 называется точкой локального максимума. А если же для всех точек то точка M0 называется точкой локального минимума функции zxy. поясняется геометрический смысл локального максимума: M0 точка максимума так как на поверхности z =z xy соответствующая ей точка C0 находится выше любой соседней точки C в этом локальность максимума.
30563. Условный экстремум функции многих переменных. Необходимое условие экстремума. Метод множителей Лагранжа 274 KB
  Условный экстремум функции многих переменных. Пусть требуется найти максимумы и минимумы функции f х у при условии что х и у связаны уравнением х у = 0. Подберём так чтобы для значений х и у соответствующи экстремуму функции f х у вторая скобка в равенстве 5 обратилась в нуль метод Лагранжа. Метод неопределенных множителей Лагранжа Пусть функции fx1 x2 xn и Fix1 x2 xn i = 12 k дифференцируемы в некоторой области D с Rn .
30564. Сходимость числового ряда. Гармонический ряд. Общий член и остаток ряда. Признаки сходимости рядов 133.5 KB
  Гармонический ряд. Общий член и остаток ряда. Признаки сходимости рядов Определения.