50570

КИНЕМАТИКА И ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ

Контрольная

Физика

Найти работу момента сил трения от начала торможения до остановки. Найти величину изменения момента силы тяжести и момента импульса тела за время его полета и определить среднюю мощность развиваемую силой тяжести за время полета тела. Найти работу момента сил трения от начала торможения до остановки. Из закона сохранения момента импульса следует что угловая скорость стержня с шариком может быть найдена из уравнения: где момент инерции шарика; угловая скорость шарика; момент инерции стержня с шариком.

Русский

2014-02-03

450 KB

17 чел.

ТИПОВОЙ РАСЧЕТ № 2 «КИНЕМАТИКА И ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ. законЫ сохранения»

Однородный диск массой  и радиусом  вращается с угловой скоростью . В некоторый момент времени к ободу диска начинают прижимать тормозную колодку с постоянной силой , направленной перпендикулярно оси вращения.

Сколько оборотов сделает диск до остановки, если коэффициент трения между диском и колодкой равен .

Найти работу момента сил трения от начала торможения до остановки.

Однородный стержень массой  и длиной  может вращаться без трения в вертикальной плоскости вокруг оси, проходящей через его конец.

Определить угол максимального отклонения стержня, если в нижний конец вертикально висящего стержня попадает шарик массой , летящий со скоростью , направленной под углом  к горизонту, и прилипает к нему.

Тело массой  начинает скользить с вершины гладкой сферы радиуса , установленной на подставке высотой .

Определить дальность полета тела.

Найти величину изменения момента силы тяжести и момента импульса тела за время его полета и определить среднюю мощность, развиваемую силой тяжести за время полета тела.

Однородный стержень массой  и длиной  с прикрепленным на конце шариком массой  может вращаться без трения в вертикальной плоскости вокруг оси, проходящей через его конец. Стержень отклоняют на угол  и отпускают с начальной скоростью , направленной перпендикулярно стержню.

Определить угол максимального отклонения стержня и выделившееся при ударе количество теплоты, если в нижний конец стержня через время, равное , где  — период колебаний системы, попадает шарик массой , летящий со скоростью , направленной под углом  к горизонту и прилипает к нему.

Найти зависимость силы реакции оси от угла  отклонения от начального положения.

Однородный диск радиусом  и массой  вращается с угловой скоростью . В некоторый момент времени к ободу диска начинают прижимать тормозную колодку с силой, зависящей от времени по закону , где . Масса диска распределена по закону: .

Найти зависимость от времени угла поворота, угловой скорости и углового ускорения.

Сколько оборотов сделает диск до остановки, если коэффициент трения между диском и колодкой равен .

Найти работу момента сил трения от начала торможения до остановки.

ТАБЛИЦА ИСХОДНЫХ ДАННЫХ (2)

N

Самостоятельно проставьте свободные исходные данные и размерности физических величин в таблице исходных данных. — номер варианта студента. Число  задается преподавателем, ведущим занятия в данной группе.


МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ТИПОВОГО РАСЧЕТА 2 «КИНЕМАТИКА И ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ. ЗАКОНЫ СОХРАНЕНИЯ»

ïðèìåðû ðåøåíèÿ çàäà÷

Однородный диск массой  и радиусом  вращается с угловой скоростью . В некоторый момент времени к ободу диска начинают прижимать тормозную колодку с постоянной силой , направленной перпендикулярно оси вращения.

Сколько оборотов сделает диск до остановки, если коэффициент трения между диском и колодкой равен .

Запишем уравнение вращательного движения тела с моментом инерции относительно некоторой оси

.

Выберем направление оси вдоль направления вектора  и запишем проекцию уравнения вращательного движения на выбранное направление относительно оси, проходящей через центр масс тела:

.

Так как, сила трения пропорциональна прижимающей силе: , то

.

Интегрируя последнее уравнение, получим

.

Учитывая начальное условие , находим, что . Следовательно, угловая скорость зависит от времени по закону:

.

Зависимость от времени угла поворота  получим проинтегрировав выражение для угловой скорости:

,

где — значение угла в начальный момент времени.

Время  до остановки диска найдем из условия равенства угловой скорости нулю:

.

Число оборотов диска  до остановки находим из выражения

,

где  — момент инерции однородного диска.

Однородный стержень массой  и длиной  может вращаться без трения в вертикальной плоскости вокруг оси, проходящей через его конец. В другой конец вертикально висящего стержня попадает шарик массой , летящий со скоростью , направленной под углом  к горизонту и прилипает к нему. 

Определить угол максимального отклонения стержня.

Из закона сохранения момента импульса

,

следует, что угловая скорость  стержня с шариком может быть найдена из уравнения:

,

где  — момент инерции шарика;  — угловая скорость шарика;  — момент инерции стержня с шариком.

Угол  отклонения стержня с шариком найдем применив закон сохранения механической энергии и дополнительные соотношения:

ÈÍÔÎÐÌÀÖÈÎÍÍÛÉ ÁËÎÊ

Закон движения материальной точки по окружности радиуса r задается уравнением:

,                                                                                      (2.1)

где  — угол поворота радиуса-вектора  материальной точки, t — время движения.

Поворот тела на некоторый угол  можно задать в виде псевдовектора1, длина которого равна , а направление совпадает с направлением поступательного движения правого винта, вращаемого в ту же сторону.

Псевдовектор угловой скорости характеризует быстроту изменения вектора угла поворота

                                                             (2.2)

где  —вектор угла поворота, направление которого связывается с направлением вращения правилом правого винта.

Псевдовектор углового ускорения характеризует быстроту изменения вектора угловой скорости

                                                             (2.3)

В том случае если угловое ускорение зависит только от угла поворота, то от дифференцирования по времени можно перейти к дифференцированию по угловой координате:

                                           (2.4)

Вектор линейной скорости связан с вектором угловой скорости постредством операции векторного произведения:

                                                                 (2.5)

Связь между модулями линейных и угловых величин, характеризующих движение точки по окружности:

                                           (2.6)

Псевдовектор момента силы определяется как векторное произведение радиуса-вектора точки приложения силы и вектора силы:

.                                                                (2.7)

Модуль момента силы равен

                                                                  (2.8)

где  — угол между векторами  и .

Псевдовектор момента импульса материальной точки определяется как векторное произведение радиуса-вектора материальной точки и вектора импульса:

.                                                           (2.9)

Модуль момента импульса равен

                                                                 (2.10)

где  — угол между векторами  и .

Из закона изменения импульса тела , следует закон сохранения импульса:

если система замкнута или сумма внешних сил, действующих на систему материальных точек, равна нулю, то импульс системы сохраняется, т. е. будет оставаться постоянным с течением времени: .

если система не замкнута, но проекция суммы внешних сил на некоторое направление OX равна нулю, то проекция импульса системы на это направление сохраняется, т. е. .

Момент инерции твердого тела вычисляется по формуле:

.                                                                 (2.11)

Уравнение вращательного движения тела с моментом инерции относительно некоторой оси (второй закон Ньютона для вращательного движения)

,                                                                 (2.12)

где  — вектор угловой скорости,  — радиус-вектор точки приложения силы .

Второй закон Ньютона для вращательного движения в обобщенной форме (закон изменения момента импульса системы):

                                                                      (2.13)

Из закона изменения момента импульса системы следуют законы сохранения:

Если система замкнута или сумма моментов внешних сил равна нулю, то момент импульса системы сохраняется, т. е.

Если система не замкнута, но проекция суммы моментов внешних сил на какое-либо направление OZ равна нулю, то проекция момента импульса системы на это направление сохраняется, т. е.

Закон сохранения момента импульса системы тел можно записать в виде:

                                            (2.14)

где  — момент инерции системы тел относительно оси z; — угловая скорость вращения тел системы вокруг оси OZ.

Элементарная работа момента сил равна

                                                                        (2.15)

Полная работа момента сил равна

.                                                                         (2.16)

Механическая энергия системы телравна

                                                                          (2.17)

где кинетическая энергия тела, вращающегося вокруг оси OZ, поступательно движущейся со скорость :

                                                   (2.18)

а потенциальная энергия системы.

Закон изменения механической энергии системы

                                               (2.19)

где  — работа внешних сил, действующих на систему,  — работа внутренних неконсервативных сил.

Из закона изменения механической энергии системы следуют законы сохранения:

Если система замкнута и в ней отсутствуют внутренние неконсервативные силы, то ее механическая энергия сохраняется, т.е.

Если система не замкнута и неконсервативна, но , то ее механическая энергия сохраняется.

Координаты центра инерции системы материальных точек находятся по формулам:

;                                                  (2.20)

.                                                  (2.21)

Период колебаний  физического маятника находится по формуле

,

где  — расстояние от оси качания до центра инерции физического маятника.


 

А также другие работы, которые могут Вас заинтересовать

84331. Организация процесса приготовления и разработка ассортимента гусиной и утиной печени 1.72 MB
  Прежде всего под фуа-гра подразумевается особым образом приготовленная гусиная печень. Однако, современные повара-умельцы наловчились готовить фуа-гра и из утиной печени, и из печени перепелов, и даже из более привычной нам свиной и говяжьей печени.
84332. Роль и место организационного поведения в процессах, протекающих в организации 391 KB
  Актуальность темы заключается в том, что в управлении организацией важно всё контролировать, необходимо управлять всеми составляющими организации, поэтому современный руководитель должен иметь представление о роли и месте организационного поведения в процессах, протекающих в организации.
84333. Комплексное использование статистических методов при анализе основных экономических показателей деятельности тридцати крупнейших банков РФ 2.93 MB
  Познавательные, обучающие и профессиональные цели выполнения курсовой работы - дать дополнительные теоретические знания и развить необходимые практические навыки по изучению основ статистического наблюдения, сводки и группировки статистических данных...
84334. Театрально-игровая деятельность в системе художественно-эстетического воспитания дошкольников 376.77 KB
  Объект исследования: театрально-игровая деятельность детей дошкольного возраста. Предмет исследования: художественно-эстетическое воспитание в театрально-игровой деятельности детей. Определить особенности реализации художественно-эстетического воспитания детей в условиях реализации...
84335. Расчет и проектирование металлоконструкции мостового электрического крана балочного типа 519.5 KB
  Мостовой кран предназначен для транспортировки и перемещения грузов. Конструкция является ответственной. Работает мостовой кран при переменных нагрузках. Нагрузками являются ручные или электрические тельферы, ходовые колеса которых перемещаются по нижнему поясу балки.
84336. Оценка стоимости бизнеса на примере ОАО АГРАРИЙ-РАНОВА 290.76 KB
  Расчет рыночной стоимости собственного капитала методом капитализации потоков выгод к владельцам вложенного и собственного капитала. Расчет рыночной стоимости бизнеса и собственного капитала методом дисконтирования чистых денежных потоков к владельцам вложенного капитала. На данном этапе определяется нормализованная балансовая стоимость вложенного капитала и собственного капитала по объекту оценки...
84337. Розробка зв’язного радіоприймача УКХ діапазону 808.89 KB
  В результаті проектування були розкриті наступні питання, які стосуються перспективи розвитку курсового проекту. При вивченні методів побудови аналогів проектованого пристрою і порівняння їх переваг та недоліків, були сформовані технічні умови для радіоприймача КХ діапазону
84338. Основы окружающей среды и энергосбережения 37.39 KB
  Раскройте сущность административного управления природопользованием и охраной окружающей среды. Изложите основные направления Национальной стратегии устойчивого развития Республики Беларусь в области охраны окружающей среды и энергосбережения. В процессе решения вопроса эффективного и безопасного для окружающей среды применения пестицидов реализуются разные подходы.
84339. Ассортимент и качество рыбных консервов в масле 51.21 KB
  Рыбные консервы в масле являются полноценным пищевым продуктом имеющим оригинальную рецептуру приготовления. Рыбные консервы в заливке на основе масла составляют классический ассортимент где проявляются все оттенки вкуса и запаха рыбы. Именно благодаря этим свойствам консервы являются одним...