50570

КИНЕМАТИКА И ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ

Контрольная

Физика

Найти работу момента сил трения от начала торможения до остановки. Найти величину изменения момента силы тяжести и момента импульса тела за время его полета и определить среднюю мощность развиваемую силой тяжести за время полета тела. Найти работу момента сил трения от начала торможения до остановки. Из закона сохранения момента импульса следует что угловая скорость стержня с шариком может быть найдена из уравнения: где момент инерции шарика; угловая скорость шарика; момент инерции стержня с шариком.

Русский

2014-02-03

450 KB

18 чел.

ТИПОВОЙ РАСЧЕТ № 2 «КИНЕМАТИКА И ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ. законЫ сохранения»

Однородный диск массой  и радиусом  вращается с угловой скоростью . В некоторый момент времени к ободу диска начинают прижимать тормозную колодку с постоянной силой , направленной перпендикулярно оси вращения.

Сколько оборотов сделает диск до остановки, если коэффициент трения между диском и колодкой равен .

Найти работу момента сил трения от начала торможения до остановки.

Однородный стержень массой  и длиной  может вращаться без трения в вертикальной плоскости вокруг оси, проходящей через его конец.

Определить угол максимального отклонения стержня, если в нижний конец вертикально висящего стержня попадает шарик массой , летящий со скоростью , направленной под углом  к горизонту, и прилипает к нему.

Тело массой  начинает скользить с вершины гладкой сферы радиуса , установленной на подставке высотой .

Определить дальность полета тела.

Найти величину изменения момента силы тяжести и момента импульса тела за время его полета и определить среднюю мощность, развиваемую силой тяжести за время полета тела.

Однородный стержень массой  и длиной  с прикрепленным на конце шариком массой  может вращаться без трения в вертикальной плоскости вокруг оси, проходящей через его конец. Стержень отклоняют на угол  и отпускают с начальной скоростью , направленной перпендикулярно стержню.

Определить угол максимального отклонения стержня и выделившееся при ударе количество теплоты, если в нижний конец стержня через время, равное , где  — период колебаний системы, попадает шарик массой , летящий со скоростью , направленной под углом  к горизонту и прилипает к нему.

Найти зависимость силы реакции оси от угла  отклонения от начального положения.

Однородный диск радиусом  и массой  вращается с угловой скоростью . В некоторый момент времени к ободу диска начинают прижимать тормозную колодку с силой, зависящей от времени по закону , где . Масса диска распределена по закону: .

Найти зависимость от времени угла поворота, угловой скорости и углового ускорения.

Сколько оборотов сделает диск до остановки, если коэффициент трения между диском и колодкой равен .

Найти работу момента сил трения от начала торможения до остановки.

ТАБЛИЦА ИСХОДНЫХ ДАННЫХ (2)

N

Самостоятельно проставьте свободные исходные данные и размерности физических величин в таблице исходных данных. — номер варианта студента. Число  задается преподавателем, ведущим занятия в данной группе.


МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ТИПОВОГО РАСЧЕТА 2 «КИНЕМАТИКА И ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ. ЗАКОНЫ СОХРАНЕНИЯ»

ïðèìåðû ðåøåíèÿ çàäà÷

Однородный диск массой  и радиусом  вращается с угловой скоростью . В некоторый момент времени к ободу диска начинают прижимать тормозную колодку с постоянной силой , направленной перпендикулярно оси вращения.

Сколько оборотов сделает диск до остановки, если коэффициент трения между диском и колодкой равен .

Запишем уравнение вращательного движения тела с моментом инерции относительно некоторой оси

.

Выберем направление оси вдоль направления вектора  и запишем проекцию уравнения вращательного движения на выбранное направление относительно оси, проходящей через центр масс тела:

.

Так как, сила трения пропорциональна прижимающей силе: , то

.

Интегрируя последнее уравнение, получим

.

Учитывая начальное условие , находим, что . Следовательно, угловая скорость зависит от времени по закону:

.

Зависимость от времени угла поворота  получим проинтегрировав выражение для угловой скорости:

,

где — значение угла в начальный момент времени.

Время  до остановки диска найдем из условия равенства угловой скорости нулю:

.

Число оборотов диска  до остановки находим из выражения

,

где  — момент инерции однородного диска.

Однородный стержень массой  и длиной  может вращаться без трения в вертикальной плоскости вокруг оси, проходящей через его конец. В другой конец вертикально висящего стержня попадает шарик массой , летящий со скоростью , направленной под углом  к горизонту и прилипает к нему. 

Определить угол максимального отклонения стержня.

Из закона сохранения момента импульса

,

следует, что угловая скорость  стержня с шариком может быть найдена из уравнения:

,

где  — момент инерции шарика;  — угловая скорость шарика;  — момент инерции стержня с шариком.

Угол  отклонения стержня с шариком найдем применив закон сохранения механической энергии и дополнительные соотношения:

ÈÍÔÎÐÌÀÖÈÎÍÍÛÉ ÁËÎÊ

Закон движения материальной точки по окружности радиуса r задается уравнением:

,                                                                                      (2.1)

где  — угол поворота радиуса-вектора  материальной точки, t — время движения.

Поворот тела на некоторый угол  можно задать в виде псевдовектора1, длина которого равна , а направление совпадает с направлением поступательного движения правого винта, вращаемого в ту же сторону.

Псевдовектор угловой скорости характеризует быстроту изменения вектора угла поворота

                                                             (2.2)

где  —вектор угла поворота, направление которого связывается с направлением вращения правилом правого винта.

Псевдовектор углового ускорения характеризует быстроту изменения вектора угловой скорости

                                                             (2.3)

В том случае если угловое ускорение зависит только от угла поворота, то от дифференцирования по времени можно перейти к дифференцированию по угловой координате:

                                           (2.4)

Вектор линейной скорости связан с вектором угловой скорости постредством операции векторного произведения:

                                                                 (2.5)

Связь между модулями линейных и угловых величин, характеризующих движение точки по окружности:

                                           (2.6)

Псевдовектор момента силы определяется как векторное произведение радиуса-вектора точки приложения силы и вектора силы:

.                                                                (2.7)

Модуль момента силы равен

                                                                  (2.8)

где  — угол между векторами  и .

Псевдовектор момента импульса материальной точки определяется как векторное произведение радиуса-вектора материальной точки и вектора импульса:

.                                                           (2.9)

Модуль момента импульса равен

                                                                 (2.10)

где  — угол между векторами  и .

Из закона изменения импульса тела , следует закон сохранения импульса:

если система замкнута или сумма внешних сил, действующих на систему материальных точек, равна нулю, то импульс системы сохраняется, т. е. будет оставаться постоянным с течением времени: .

если система не замкнута, но проекция суммы внешних сил на некоторое направление OX равна нулю, то проекция импульса системы на это направление сохраняется, т. е. .

Момент инерции твердого тела вычисляется по формуле:

.                                                                 (2.11)

Уравнение вращательного движения тела с моментом инерции относительно некоторой оси (второй закон Ньютона для вращательного движения)

,                                                                 (2.12)

где  — вектор угловой скорости,  — радиус-вектор точки приложения силы .

Второй закон Ньютона для вращательного движения в обобщенной форме (закон изменения момента импульса системы):

                                                                      (2.13)

Из закона изменения момента импульса системы следуют законы сохранения:

Если система замкнута или сумма моментов внешних сил равна нулю, то момент импульса системы сохраняется, т. е.

Если система не замкнута, но проекция суммы моментов внешних сил на какое-либо направление OZ равна нулю, то проекция момента импульса системы на это направление сохраняется, т. е.

Закон сохранения момента импульса системы тел можно записать в виде:

                                            (2.14)

где  — момент инерции системы тел относительно оси z; — угловая скорость вращения тел системы вокруг оси OZ.

Элементарная работа момента сил равна

                                                                        (2.15)

Полная работа момента сил равна

.                                                                         (2.16)

Механическая энергия системы телравна

                                                                          (2.17)

где кинетическая энергия тела, вращающегося вокруг оси OZ, поступательно движущейся со скорость :

                                                   (2.18)

а потенциальная энергия системы.

Закон изменения механической энергии системы

                                               (2.19)

где  — работа внешних сил, действующих на систему,  — работа внутренних неконсервативных сил.

Из закона изменения механической энергии системы следуют законы сохранения:

Если система замкнута и в ней отсутствуют внутренние неконсервативные силы, то ее механическая энергия сохраняется, т.е.

Если система не замкнута и неконсервативна, но , то ее механическая энергия сохраняется.

Координаты центра инерции системы материальных точек находятся по формулам:

;                                                  (2.20)

.                                                  (2.21)

Период колебаний  физического маятника находится по формуле

,

где  — расстояние от оси качания до центра инерции физического маятника.


 

А также другие работы, которые могут Вас заинтересовать

103. Санітарно-гігієнічні вимоги до планування, благоустрою, експлуатації загальноосвітніх шкіл 174 KB
  Більшість дітей дотримуються тих гігієнічних вимог, що є необхідними для даного віку. Гігієнічна оцінка фізичного розвитку і стану здоров`я учнів. Складання плану гігієнічного виховання учнів класу.
104. Организация работ по строительству производственного цеха по ремонту механизмов 827.5 KB
  Определение продолжительности строительства, объёмов и трудоёмкости работ. По конструктивному решению здание представляет собой рамную, каркасную конструкцию. Прямые затраты на выполнение проекта.
105. Технические характеристики электропогружчиков логистического предприятия 339 KB
  Определение потребности в ресурсах при проведении работ по разгрузке и приемке товара. Выводы по состоянию охраны труда на предприятии и предложения по улучшению организации службы охраны труда. Напольное, стеллажное и мелкоячеистое хранение.
106. Теорія електричних та магнітних кіл 575 KB
  Розрахунок вторинних параметрів та А-параметрів електричної лінії. Аналіз частотного електричного фільтра. Типовими вузлами тракту передачі є лінія зв‘язку, якою сигнал розповсюджується з пункту передачі до пункту прийому, і електричний фільтр.
107. Економічне обґрунтування рішення щодо налагодження власного виробництва і реалізації на вітчизняному ринку електрогрилів 614.5 KB
  Вибір товару для просування на ринок і оцінювання його конкурентоздатності. Розрахунок витрат на виробництво по роках життєвого циклу проекта виробництва і реалізації товару. Розрахунок узагальнюючих показників ефективності реалізації бізнес-ідеї.
108. Особливості роботи редакторів растрової та векторної графіки 615.5 KB
  Редактор растрової графіки Adobe Photoshop, програма верстки Adobe PageMaker, редактор векторної графіки Corel DRAW. Найбільш широке поширення на комп’ютерах IBM PC одержали монітори типу MDA, CGA, Hercules, EGA і VGA.
109. Загальна теорія лінійних операторів 598.5 KB
  Лінійні оператори в комплексному Евклідовому просторі. Основний вигляд матриці лінійного оператора. Одним з найважливіших моментів у створенні основ цих математичних дисциплін є введення поняття функція.
110. Расчёт технологии прокатки листа 16х2000х5000 из стали 3 на стане 2800 ОАО АМК 518 KB
  Расчет режима обжатий в черновой и чистовой клетях. Расчет скоростного режима прокатки на клети Кварто. Определение допустимого момента при прокатке на клети Дуо. Определение допустимых усилий на валках.
111. Разработка экономических характеристик ООО 7-С Ритейл 89.11 KB
  Изучение и анализ всех видов деятельности предприятия в условиях перехода к рыночной экономике. Анализ экономических процессов, выбор и обоснование управленческих решений в конкретных производственных ситуациях.