50592

Прибор регистрирующий ДИСК 250М

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

ДИСК 250М прибор построенный на микропроцессорной элементной базе предназначен для измерения регистрации сигнализации и регулирования параметров технологических процессов представленных унифицированными сигналами и сигналами от термопар термопреобразователей сопротивления дифференциальнотрансформаторных датчиков и пирометров. ДИСК 250М объединяет в одном исполнении все функциональное разнообразие многочисленных исполнений прибора ДИСК 250. Исключение составляют приборы для измерения температуры жидких металлов ДИСК 250С и сигналов...

Русский

2014-01-26

75.5 KB

12 чел.

Прибор регистрирующий ДИСК 250М

Преимущества ДИСК 250М:

– отсутствие реохорда;

– универсальный вход;

– полный набор выходных функций в одном исполнении (сигнализация, преобразование входного сигнала в токовый, источник питания внешних датчиков, регулирование ПИД и позиционное по заданию постоянному и изменяющемуся во времени);

– простота конфигурирования прибора;

– повышенная точность измерений;

– цифровая и аналоговая индикация результата измерений;

– возможность хранения результатов измерения во внутренней энергонезависимой памяти;

– возможность применения внешней термокомпенсации холодного спая термопары;

– наличие цифрового интерфейса и программы связи с компьютером;

– возможность работы с барьерами искрозащиты;

– межповерочный интервал – 2 года.

ДИСК 250М – прибор, построенный  на микропроцессорной элементной базе предназначен для измерения, регистрации, сигнализации и регулирования параметров технологических процессов, представленных унифицированными сигналами и сигналами от термопар, термопреобразователей сопротивления, дифференциальнотрансформаторных датчиков и пирометров.

Прибор предназначен для работы в металлургической, машиностроительной, энергетической, пищевой, промышленности производства строительных материалов и других отраслях экономики.

ДИСК 250М объединяет в одном исполнении все функциональное разнообразие многочисленных исполнений прибора ДИСК 250. Исключение составляют приборы для измерения температуры жидких металлов ДИСК 250С) и сигналов тензометрических датчиков (ДИСК 250ТН), для которых нет замены в рамках ДИСК 250М.


Технические характеристики прибора

Входные сигналы

Термопары: L, K, S, B, N, J, A-1;

Термопреобразователи сопротивления:

50М, 100М, 50П, 100П (схема подключения 4-х и 3-х-проводная);

Пирометры: РК-15; РК-20; РС-20;

Унифицированные сигналы:

0…5; 4…20 мА; 0…10; 0…100 мВ; 0…1 В.

Сигналы 0…10 и минус 10…10 мГн в комплекте с преобразователем НП-П10

Выходные функции

Источник питания внешних датчиков  

Номинальные значения - 36 В, 30 мА, защита от перегрузки - 50 мА

Преобразование результата измерений в токовый сигнал, пропорциональный результату измерения

4…20 мА (нагрузка не более 500 Ом)

Сигнализация от 1 до 4 уставок с релейным выходом и с выбором типа уставок «больше» или «меньше»

Коммутируемая мощность 220 В, 1 А переменного тока.

Регистрация

Фломастером на дисковой диаграммной бумаге, в полярных координатах

Регулирование

Законы регулирования:

ON/OFF (с релейным выходом);

– ПИД-С(с аналоговым выходом);

– ПИД-S (с двумя релейными выходами), – ПИД-Н/С (с релейным ШИМ-выходом).

Задание - постоянное во времени или представленное кусочно-линейной (до 30 участков) функцией времени (технологической программой).

Характеристики

Предел погрешности измерений

0,25 % от диапазона измерений. Погрешность термокомпенсации – 0,5 0С

Напряжение питания

175…245 В

Потребляемая мощность, не более

10 ВА

Габаритные размеры

322х322х117 (длина × ширина × глубина)

Масса, не более

5 кг

Время оборота диаграммного диска

Выбирается из ряда: 1; 2; 4; 8; 12; 24; 48; 72; 96; 120; 144; 168; 192 ч.

Тип диаграммной бумаги

0…100 %

(реестровый номер 2190 по ГОСТ 7826)

Рабочие условия

Рабочая температура от 5 до 50 0С, относительная влажность:

– для исполнения УХЛ 4.2 -  80 % при температуре 35 0С без конденсации влаги;

– для исполнения О4.2 – 98 % при температуре  35 0С без конденсации влаги.

Средняя наработка на отказ

25000 ч

Средний срок службы

10 лет

Конструктивное исполнение

щитовое или настенное


Таблица 1 - Исполнения приборов

Обозначение исполнения прибора

Функциональные особенности исполнения

10

- регистрация;

- цифровая индикация результата измерения

20

регистрация;

цифровая индикация результата измерения;

барграф;

аналоговый выход;

релейные выходы;

источник питания внешних датчиков;

интерфейс связи с ПК

21

Прибор исполнения 20 в комплекте с электропнев-мопреобразователем ЭП 3324. Выход регулирования пневматический 20…100 кПа

22

Прибор исполнения 20 в комплекте с преобразователем НП-П10 для работы с входным сигналом:  0…10 и ±10 мГн

Пример записи приборов при заказе:

«Прибор регистрирующий ДИСК 250М – 10; 5 штук».

Кроме того, можно заказать комплект принципиальных электрических схем прибора по форме: «Комплект схем прибора регистрирующего ДИСК 250М. 2.556.086 Э3».

Для работы приборов с датчиками, расположенными во взрывоопасной зоне, необходимо заказать барьер искрозащиты.

Пример заказа:

«Барьер искрозащиты 2000 УБ, 1 штука».

«Барьер безопасности БИ-Т, 1 штука».

Для подключения прибора к компьютеру можно дополнительно заказать преобразователь интерфейсов ND6520.

3


 

А также другие работы, которые могут Вас заинтересовать

21696. МЕТОДЫ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА 286 KB
  Вычисления соответствующие действиям нечёткого контроллера в системе управления температурой водяной ванны можно представить в виде следующего алгоритма: Шаг 1. Гн Омату рассматривает помимо нейросетевого и нечёткого управления ещё два способа управления водяной ванной. По результатам экспериментов из всех схем управления схема ПИД наиболее проста в реализации.
21697. Система стабилизации перевёрнутого маятника 668.5 KB
  Система стабилизации перевёрнутого маятника Перевёрнутый маятник представляет собой модель нестабильной системы управления сам маятник закреплён сверху на тележке которая может перемещаться вправо и влево в горизонтальной плоскости причём это перемещение является управляемым. Задача управления состоит в стабилизации маятника в вертикальном положении на возможно более продолжительное время. Цель управления состоит в том чтобы переместить тележку в позицию таким образом чтобы маятник оставался в вертикальном положении.
21698. Применение нейросетей для управления печью 145 KB
  В таких случаях целью управления является возможно более быстрое и плавное достижение требуемой температуры с последующим удерживанием её значения в заданных пределах. Система управления печью разработана японской фирмой Omron Inc. Структурная схема системы управления печью В состав системы управления входит модуль датчиков плата параллельного интерфейса вводавывода компьютер NEC PC9801F и исполнительное устройство.
21699. ОПРЕДЕЛЕНИЕ ИНТЕЛЛЕКТА 198.5 KB
  Более простое и пожалуй более понятное базовое определение интеллекта даёт доцент Днепропетровского национального университета Алексей Дубинский. Способность это мера интеллекта. Измеряется величиной интеллекта.
21700. ЦЕЛИ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА 152.5 KB
  При этом все объекты делятся на порядки и объект более высокого порядка может управлять только объектом более низкого порядка т. Из теории объектов следует что все программы объекты одного порядка а значит не существует программы которая могла бы генерировать другие программы. Точнее три порядка и три подпорядка третьего порядка. Итак объекты 1го порядка это материальные носители данных.
21701. ТЕОРИЯ ОБЪЕКТОВ 431 KB
  его модификации отражающие некоторые значимые конструктивные отличия объектов одного порядка порядок. Из приведённого выше определения следует что Вселенная это объект Мира более низкого порядка. 2 Объект более высокого порядка полностью включает в себя все свойства объекта низшего порядка в том числе и в потенциальной форме. Следует заметить что свойства объекта низшего порядка могут быть полностью равны свойствам объекта высшего порядка и они при этом не сольются поскольку в результате наличия у объекта более высшего порядка...
21702. ОБЪЕКТЫ ТРЕТЬЕГО ПОРЯДКА 491.5 KB
  2} Итак с помощью объектов 2го порядка мы можем изменять состояния различных объектов 1го порядка.1 В него мы введём дополнительный объект 1го порядка изменение состояния которого через универсальный интерфейс отражается на остальных объектах 1го порядка. Введём также генератор случайности дающий возможность случайно выбрать какой объект 1го порядка следует изменить наиболее сильно и в каком направлении.
21703. Модели представления знаний 96 KB
  Впервые была представлена Минским как попытка построить фреймовую сеть или парадигму с целью достижения большего эффекта понимания . Минский разработал такую схему в которой информация содержится в специальных ячейках называемых фреймами объединенными в сеть называемую системой фреймов .Возможно б что вы используете информацию содержащуюся в вашем фрейме комнаты для того чтобы распознать мебель что называется процессом сверхувниз или в контексте теории фреймов фреймодвижущим распознаванием . Он предложил систему ...
21704. Модуль Нейрокибернетика 380 KB
  В первом случае сформированная нейронная сеть выступает в роли регрессионной модели и имеет k входов и один выход то есть в качестве входных значений нейронной сети выступают предшествующие значения котировок а в качестве выхода значение на текущий момент. В автоматическом управлении нейронные сети так же не плохо справляются со своей задачей и если учесть что не нужно проводить сложных расчетов то выбор в пользу использования нейронных сетей становиться очевидным. Так же нейронные сети находят практическое применение при диагностике...